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Chapter 2

Fundamentals

The computational models and engineering solutions proposed in this thesis for perform-

ing the dexterous manipulation and haptic exploration of surfaces follow the principles

involved in human perception, cognition, and action.

As presented in Figure 2.1, the perceptual process starts a sequence of sub-mechanisms

that work together to estimate a representation of the environment. The perceptual

representation is then used to infer a reaction strategy to those stimuli coming from the

environment.

Several models have been proposed to explain and describe the mechanisms involved

in human perception and how they are integrated into global human behaviour. Humans

perceive in order to act on the environment and, the actions performed with environment

elements affect the perception of the environment: the so-called action-perception loop

(Figure 2.1).

Although most of the time, the sensory signals are ambiguous and corrupted with noise,

humans have a remarkable capability to create successful perceptual representations which

they use to guide their actions [Ernst and Bulthoff, 2004]. To explain this capability, Her-

mann von Helmholtz proposed an approach to model the perception mechanisms (Figure

2.1), introducing a principle designed by unconscious inference [Westheimer, 2008]. The

principle states that humans perceive a specific state of the environment, choosing the

state which is most likely to have caused the pattern of stimulus that the human subject

has received through the sensory apparatus. Additionally, although sensory data is di-

verse, it is not sufficient to uniquely determine what is perceived. Prior knowledge must

be used, which introduces constraints to the process of inference from ambiguous sensory

signals.

The next sections present the fundamentals of the formalism of probability theory

used to model the state of robotic systems, human agents, and the environment (section

2.1). This chapter also presents the formalism of probabilistic grids (section 2.2), used in

this thesis to represent the workspace surrounding the robotic and human agents. The

information exchanged between the different modules of the methods proposed in this
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Figure 2.1: Representation of the fundamental mechanisms underlying the action-
perception loop. Adapted from [Ernst and Bulthoff, 2004].

work is described using the formalism of information theory (section 2.3).

2.1 Probabilistic modelling

In robotics, different formalisms (such as first-order predicate logic and probability the-

ory) have been followed to represent knowledge and describe reasoning applications. An

extensive review of these formalisms can be found in [Hertzberg and Chatila, 2008].

This work uses the probability theory to represent the knowledge of the state of the

robotic system (and other agents) and its surroundings, following an approach analogous

to the work [Knill and Richards, 1996] to model human perception mechanisms and

reasoning. This formalism has been used extensively in robotics. The increasing interest

in this formalism is related to its ability to deal with the incompleteness of the description

of the system (inaccurate modelling, relevant effect of hidden variables) and uncertainty

of the available data (multimodal noisy data) [Thrun et al., 2005], [Ferreira and Dias,

2014c]. A new generation of computer architectures [Faix et al., 2015] and programming

languages [Lebeltel et al., 2004] is also being developed to optimize and generalize the

implementation of the methods described using this formalism.

The probabilistic methods proposed in this thesis follow the principles of the Bayesian

probability theory.
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2.1.1 Bayes rule

In this thesis, several descriptors such as robot state, multi-modal sensor measurements,

and surrounding environment state, are represented by continuous or discrete random

variables. Each variable is defined for a specific domain (possible values). A random

variable or logical operation of random variables is characterized by a probability density

function (continuous variables) or probability mass function (discrete variables), which

assigns a probability ([0, 1]) to each value of the domain of the random variable. The work

[Chung and AitSahlia, 2012] presents an extensive introduction to the basic concepts of

probability theory.

Let C denote a random variable and c denote a specific value of the domain of C.

In this abstract formulation of a problem, C represents a potential cause of an event of

interest E (with e being a specific value of this variable).

During the probabilist modelling of a problem, the random variables establish statis-

tical independence relations between them. If E and C are considered independent, then

E does not influence C. This type of influence is modelled by a conditional probability,

as shown in equation 2.1 .

P (C|E) = P (C) (2.1)

However, in robotics it is common that a random variable carries information about

other random variables. Considering that assumption and returning to the example pre-

sented previously, equation 2.2 can be formulated.

P (C|E) =
P (C,E)

P (E)
=
P (E|C)P (C)

P (E)
(2.2)

Equation 2.2 describes the Bayes rule. It expresses the relation between P (C|E) and

its inverse P (E|C). C expresses the quantity to be inferred, using the knowledge of

evidence E. The factor P (C) represents the prior probability distribution, expressing the

information available about C before the incorporation of the evidence E.

The probability distribution P (C|E) is denoted as the posterior probability distri-

bution. It describes the knowledge of C after integrating the data E and the a-priori

information about C. The element P (E|C) represents the likelihood probability distribu-

tion, which expresses the knowledge about how the variable C influences E. In robotics,

this factor is also termed the generative model. The likelihood probability distribution is

determined analytically, or it can result from a training period. The data acquired during
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this training period is used to learn the parameters of the probability distribution function

P (E|C). The literature [Ferreira and Dias, 2014b] presents different methods to perform

the probabilistic learning of P (E|C), such as Maximum Likelihood (ML) and Expectation

Maximization (EM).

The factor P (E) is a normalization constant. It guarantees that P (C|E) sums up to 1,

for all the domain of C. In some contexts, this parameter is not represented for simplicity

purposes.

Additional details about the determination of P (E|C) and P (C) are given throughout

this thesis as they are used to model each problem presented in this manuscript.

2.1.2 Bayesian inference

The posterior probability distribution P (C|E) is used as a source of information to perform

a decision about which state of C should be chosen. The work of [Ferreira and Dias, 2014a]

presents different approaches to define the decision rule of the inference process.

In this thesis, the decision rule is formulated directly in the posterior probability dis-

tribution P (C|E) by applying the Maximum a-Posteriori (MAP) principle.

The inferred value ĉ of C is determined by selecting the argument of P (C|E) which

provides the highest value of probability, as presented in equation 2.3 .

ĉ = arg max
c

P (C|E)

ĉ = arg max
c

P (E|C).P (C)

P (E)

ĉ = arg max
c

P (E|C).P (C) (2.3)

2.1.3 Representing the Bayesian models

Throughout this thesis, several Bayesian models are formulated and described to provide

a solution to the different challenges that are identified. In this manuscript, the Bayesian

models are represented and characterized by using two different, but complementary,

formalisms: Bayesian network and Bayesian program.

Bayesian network

A Bayesian network is a directed acyclic graph. The random variables of the Bayesian

model are represented as nodes. The probabilistic (causal) relationships between pairs of
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Figure 2.2: Graphical representation of a Bayesian model described by the random vari-
ables X1, X2, X3, X4 represented in the nodes. The causal dependencies are represented
by the arrows (directed arcs).

random variables are represented as directed arcs. This representation approach provides

an appealing visual description of the dependence relationship between random variables.

The dependence relationships expressed by the structure of a Bayesian network are

used to simplify the formulation of the joint probability distribution function. These

simplifications allow the design of efficient learning and inference algorithms based on

simpler conditional probability distributions.

If the set of nodes which have arcs terminating at Xi is described by parents(Xi),

then equation 2.4 can be formulated. Let us consider a Bayesian model with N random

variables Xi, . . . , XN represented in a graph.

P (X1, X2, . . . , XN) =
N∏
i=1

P (Xi|parents(Xi)) (2.4)

Equation 2.5 describes the joint probability distribution function for N = 4 and im-

plementing the statistical causal dependence relations illustrated in the Bayesian network

of Figure 2.2.

P (X1, X2, X3, X4) = P (X1|X2, X3).P (X3|X4).P (X2).P (X4) (2.5)

Bayesian program

The Bayesian program is a mathematical formalism and methodology used to organize

and systemize the description of a Bayesian model. This approach facilitates the anal-

ysis and comparison of the properties of different Bayesian models and the respective
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• Relevant variables:

Selection of the random variables to model the problem being studied.

• Decomposition:

The global joint probability distribution function is factored as the

product of simpler probability distribution functions, expressing the

conditional independence relations of the random variables.

• Parametric forms:

A custom mathematical function or a family of probability distribution

functions (e.g. uniform, normal, Bernoulli, Poisson, Binomial) is associated

to each of the factors identified during the decomposition stage.

• Identification:

The free parameters of the custom mathematical functions or of the families

of probability distribution functions are estimated/learned from experimental

data acquired during training sessions (or other sources of information).

• Question:

This stage of the formalism describes the inference problem to be answered by the

Bayesian model. The Bayesian model is queried concerning information about a given

random variable. The answer provided by the Bayesian model (posteriori probability

distribution function) is submitted to a Bayesian decision theory criterion (e.g. MAP)

(a)

Figure 2.3: Schematic description of the organization of the formalism used by a Bayesian
program to describe a Bayesian model.

computational implementations.

This methodology represents the Bayesian model as it follows an approach consisting

of different stages, which are described in Figure 2.3.

2.2 Probabilistic grids

In chapters 6 and 7 of this thesis, the environment surrounding the agent (robotic system

or human) performing the haptic exploration is represented by a bi-dimensional proba-

bilistic grid. The workspace is divided into a uniform grid of square cells.

A property of interest of the environment is associated to each cell with coordinates

(i, j) and described by a random variable X(i,j). This approach considers that the repre-
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(a) (b) (c)

Figure 2.4: Example of probabilistic grids used in robotics research. Probabilistic grid
representing: a) the occupancy of a 2D environment [Rocha et al., 2005]. b) the haptic
discontinuity between two regions of a surface [Martins et al., 2014]. c) the 3D shape of a
hand explored object. Occupancy state is fused with color information from an artificial
vision system [Faria et al., 2010a].

sentations of the cells of the grid are independent from each other.

The representation framework allows the integration/fusion of multi-modal data using

probabilistic modelling techniques; this approach can deal with uncertainty of the data

sources. The grid structure also provides the ability to represent heterogeneous environ-

ments (e.g. spatial discontinuities of the property of the environment being represented).

In several previous works (e.g. [Rocha et al., 2005], [Faria et al., 2010a], [Elfes, 1989]),

the bi-dimensional probabilistic grids were typically used to represent the state of the

workspace regions as empty or occupied. In this work, the state X(i,j) of each cell represents

multivalued properties of the workspace regions, such as category of material.

The state Xk
(i,j) of each cell is updated at each time iteration k by integrating new sen-

sory measurements Zk
(i,j) acquired at that region of the workspace. At the time instant k =

n, the cell (i, j) has integrated n sensory measurements Zn
(i,j) = (Z1

(i,j), Z
2
(i,j), . . . , Z

n
(i,j)). At

that time instant, the state of each cell of the probabilistic grid is described by equation

2.6.

P (Xn
(i,j)|Zn

(i,j)) =
P (Zn

(i,j)|X(i,j)).P (Xn−1
(i,j) |Z

n−1
(i,j))

P (Zn
(i,j)|Zn−1

(i,j))
= Θ.P (Zn

(i,j)|X(i,j)).P (Xn−1
(i,j) |Z

n−1
(i,j)) (2.6)

The parameter Θ is a normalization constant. Consecutive sensory measurements

Zk
(i,j) and Zk−1

(i,j) are considered independent.

According to equation 2.6, the updated representation of the state of each cell of
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the grid P (Xn
(i,j)|Z

n
(i,j)), after a new sensory measurement, is given by P (Zn

(i,j)|X(i,j)) and

P (Xn−1
(i,j) |Z

n−1
(i,j)).

The factor P (Zn
(i,j)|X(i,j)) represents the likelihood probability distribution function,

which expresses the sensor measurements model. It models the knowledge available of

how the sensor measurements are affected by the possible state of the cell/workspace

(i, j).

Alternatively, the factor P (Xn−1
(i,j) |Z

n−1
(i,j)) describes the state of the cell (i, j) at the

previous time iteration n − 1. It encodes a complete summary of all past integration of

sensory data by that cell of the grid.

2.3 Information theory and entropy

Several chapters of this thesis use random variables to model the proposed approaches and

transfer information between the different modules. This PhD thesis uses Shannon en-

tropy [Shannon, 2001a] to quantify the information encoded by a probability distribution

function P (X) of a random variable X. The formulation for discrete random variables is

presented in equation 2.7.

H(X) = E[−log(X)] =
∑
x

−P (x) log2(P (x)) (2.7)

Higher values of entropy express lower levels of information (e.g. uniform probability

distribution). Lower values of entropy encode higher levels of information (e.g. certain

event).

Different approaches for calculating the entropy of continuous probability distribution

functions are presented in [Gelfand and Yaglom, 1993].
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