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Chapter 5

Recognition of grasping primitives us-
ing tactile sensory data

5.1 Introduction

Over the past few years, several research fields (e.g. human-computer interface sciences,

crowd behaviour, medical rehabilitation, robotics, surveillance, and sport performance

analysis) have focused some of their attention on the understanding and analysis of human

behaviour and human motions [Aggarwal and Ryoo, 2011]. In robotics, the analysis of

human movements has been applied (among others) in research areas concerning the task

of learning by imitation of human demonstrations [Billard et al., 2008]. This approach was

motivated by principles described in several studies from human developmental sciences,

which propose that humans learn most of their skills by observing and analysing others

performing those tasks (observational learning) [Magill and Anderson, 2007].

Robot learning by human demonstration consists of using examples (successful and

failed) of a task performed by humans, to extract key-points and other types of con-

straints (e.g. velocities, contact intensity, and trajectories) and statistics (e.g. causal

dependencies, alternative redundancies, and contextual preferences). The data extracted

from the demonstrations is used to estimate several parameters of the model of the task

being learned.

The diversity of the demonstrations is essential to provide the robotic system with a

robust model of the task. The robustness of the model establishes the capability to deal

autonomously with (partially) new contexts (generalization capability). The approaches

based on the robot learning by human demonstration try to implement generalizable

models of the tasks, in contrast to the traditional approaches consisting of the full analytic

formulation and specification of the models.

The work presented in this chapter of the thesis intends to contribute to the devel-

opment of autonomous robotic hands by modelling the strategies used by humans to

manipulate objects using the intrinsic movements of the hand (fingers, palm), which is
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Table 5.1: Comparison between the contributions of this work and the related works

Study Task Model a Approach b Features c Application d

This Work SL P T HMA
[Delson and West, 1996] TL D F, M RPD

[Tso and Liu, 1996] TL P M RPD
[Calinon et al., 2007] TL P M RPD
[Kondo et al., 2011] SL D T RPD

[Bernardin et al., 2005] SL P T, M HMA
[Kruger et al., 2010] SL P M RPD

a SL- symbolic level; TL- trajectory level.
b P- probabilistic; D- deterministic.
c T- tactile based; F- force based; M- movement trajectories based;
d HMA- Human movement analysis; RPD- robotic platform development;

known as in-hand manipulation. This type of movements requires the complex coordi-

nated action of the fingers and palm. The temporal characteristics and sequence of the

contact between the object, fingers, and palm plays a crucial role in the stabilization of

the object being manipulated and consequently in the success of the manipulation task.

This work intends to contribute with the definition of a set of primitives to represent in-

hand manipulation movements, as well as the statistical relations between them, in order

to model different tasks of this class performed by humans; this is termed generalization

capability.

5.2 Related work

In the robotics research field, several approaches to solve the motion learning problem

from human demonstrations have been proposed [Billard et al., 2008]. Typically, the

proposed approaches can be grouped in two main categories.

One approach represents the movements at the trajectory level and generalizes the

representation of the movements through the extraction of statistical regularities from

several human demonstrations of the movements. Researchers [Tso and Liu, 1996] ap-

plied Hidden Markov Models to encode a training dataset built from a set of human

demonstrations. Given a human demonstration as input, the system reproduces the tra-

jectory of the training dataset with the highest likelihood. A simple approach was also

presented by [Delson and West, 1996] . The authors simply made a statistical analysis

of human demonstrations of a pick-and-place task and defined the range of Cartesian

trajectories that can be performed to achieve that task. Calinon [Calinon et al., 2007]

proposes to extract continuous constraints from a set of demonstrations, using different

initial positions of the object. The Cartesian trajectories of these demonstrations are

projected using Principal Component Analysis, and then the constraints are represented

through Gaussian Mixture Models. To reproduce the task, the constraints are reprojected

on the original data space, and the generalized version of the Cartesian trajectory is found
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Figure 5.1: Schematic representation of the typical contact signatures of different grasps.
Adapted from [Bernardin et al., 2005]. The boxes highlighted with orange border show
different demonstrations of the grasp. The green border highlights the regions of the hand
recruited to perform that type of grasp.

by estimating the trajectory that satisfies all the constraints. The approaches described

previously propose the learning and encoding of movements at the trajectory level.

This work follows an alternative class of approaches defined using a symbolic learn-

ing and encoding of manipulation movements, performing the supervised segmentation

and labelling of the primitives during the learning stage. Several works use Support

Vector Machines (SVM) to extract sequences of primitives from human demonstrations.

The output of the SVM, temporal sequences of labelled data, is combined with Hidden

Markov Models (HMM), which provides the most probable temporal sequence of primi-

tives [Vicente, 2007]. The HMM complements the initial sequence of primitives estimated

by SVM, which does not consider the temporal relations and dependencies between the

data elements.

[Kondo et al., 2011] proposes a method to describe in-hand manipulation movements

by recognizing a sequence of contact state transitions between the human hand and the

manipulated object. The recognition algorithm is based on a Dynamic Programming

approach by comparing the similarity of the contact state transition between an input

sequence and templates of manipulation primitives.

[Bernardin et al., 2005] describes a technique to recognize continuous human grasping

sequences using HMM. Twelve different grasp primitives are recognized, combining data

from palm tactile sensors and hand joint flexure levels from a data glove.
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Figure 5.2: Modular representation of the processes involved in the planning and execution
of a manipulation task. The representation is simplified to highlight the mechanisms
(grasping primitives based on contact signatures) supporting the approach proposed in
this chapter, Figure 5.3.

The work by [Kruger et al., 2010] presents the automatic extraction of action primitives

(without the necessity of presegmentation and manual labelling) and the corresponding

grammar from continuous movements of several human demonstrations of grasping tasks.

The approach considers that all the actions can be described by a set of elementary

building blocks (action primitives). A grammar (set of rules) defines how the action

primitives can be combined. The action primitives are represented by parametric HMM

(an extension of HMM). The extraction of the motion primitives from the movements also

considers the changes in object state.

Matsuo proposed a segmentation method of human manipulation task that measures

the contact force imposed by a human hand on the grasped object [Matsuo et al., 2009].

The work proposes a metric, whose values are used for segmenting a manipulation move-

ment into primitives. The temporal evolution of the metric is calculated from the contact

forces sensed at different regions of the hand, as long as the manipulation task progresses.

5.3 Approach overview

This work presents an approach to model the strategies underlying the in-hand manipula-

tion tasks performed by humans. The main contributions of this chapter are summarized

in Figure 5.3 and are detailed throughout the next sections of the manuscript.
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Several studies [Johansson and Flanagan, 2009], [Castiello, 2005] concluded that a gen-

eral human manipulation movement can be decomposed on different stages such as reach,

load, lift, hold, replace, and unload. The manipulation movements can be segmented

and represented as a sequence of primitives, which can be thought of as the elementary

building blocks of the task model. The temporal transition between different primitives

is made by specific events such as the variation of the intensity and extension of the

hand-object contact areas, variation of grip aperture, and type of grasp.
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Figure 5.3: Global architecture of the approach proposed in this chapter. The main con-
tributions (description of the sensing apparatus, grasp interaction encoding, and inference
of grasping primitives) are highlighted in bold and presented in sections 5.4, 5.5, and 5.6,
respectively. The variables representing the flow of the data are detailed in Table 5.2.

Table 5.2: Summary of the relevant variables used in this chapter

Variable Description Domain
k Time iteration N0

hk Tactile sensing output of the instrumented hand. (360
elements)

R360, hi ∈ [0, 255]

h
′i
k Tactile sensing output of the instrumented hand (15

cluster regions)
R15, h

′i ∈ [0, 255]

Gk Category of the grasping primitive {Primitive1, . . . , P rimitive7}
Sk Tactile activation descriptor of the instrumented hand. Si ∈ {”NotActive”, ”LowActive”,

”HighActive”}

The approach described in Figure 5.3 models the in-hand manipulation tasks by a
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temporal sequence of primitives. The in-hand manipulation movements are performed to

reorient and to repost the manipulated object, which require the change of the type of

grasp applied to the object and a precise contact interaction between the object and the

hand.

Each type of grasp can be characterized by a specific hand-object contact signature

(Figure 5.1), resulting from the interaction of the hand and the object during that period of

the task. Thus, the in-hand manipulation task can be described by a temporal sequence of

the contact signatures corresponding to different types of hand configurations interacting

with the object. The primitives used to model the in-hand manipulation task are defined

on the tactile sensing domain.

For each primitive, the spatial configuration of the contact signatures is stored, as

well as the force intensities for each region of the hand. These parameters characterizing

each primitive can then be used as control states, described by the tactile intensity and

hand locations, during the transfer of these skills to a robotic platform with manipulation

capabilities.

The flow of the data is summarized in Figure 5.3. The human demonstrator performs

an in-hand manipulation task using an instrumented data glove equipped with tactile

sensors distributed on the hand palm and finger surface region. The haptic sensory data

output is presented in section 5.4. The descriptor used to encode the grasping interaction

is detailed in section 5.5. During the execution of the task, a sequence of the elementary

primitives, selected among the set of pre-defined primitives, is extracted from the raw

data provided by the data glove. The detection of primitives is performed by a Bayesian

model detailed in section 5.6. The set of pre-defined primitives is shown in Figure 5.5.

The set of task primitives is defined and learned a-priori from human demonstrations.

The diversity of the demonstrations promotes the exploration of the variability of the

strategies used by humans to perform the same task. The essential primitives of those

strategies will emerge as permanent elements. Then, it is possible to build the temporal

and functional relations between those elements to find a canonical representation of

those strategies. This canonical representation of different in-hand manipulation tasks

and the learned parameters describing each of the primitives can be transferred to robotic

platforms (not addressed in this thesis).

5.4 Haptic sensory data

This work considers that the hand of the participant manipulating the object is instru-

mented with a data glove, which is equipped with a distributed tactile sensing array

throughout the hand surface (palm and fingers). The methods presented in this work
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were formulated considering the Tekscan Grip (Tekscan Inc, Boston, MA, U.S.) tactile

sensing array (Figure 5.4). However, the proposed approach can be adapted easily to

other types of tactile sensing devices.

During a manipulation task, at each time interaction k , the instrumented hand inter-

acts with the object, producing the haptic sensory output presented in equation 5.1.

hk = (h1, h2, . . . , h360)

h1, h2, . . . , hN ∈ [0, 255] (5.1)

The variables h1, h2, . . . , h360 represent the raw tactile sensing outputs of each of the

360 elements of the tactile sensing array. The output of each of the Tekscan Grip sensing

elements is an eight-bit integer (equation 5.1).

The sensing outputs are used to encode (section 5.5) and categorize (section 5.6.2)

different classes of grasping primitives.
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Figure 5.4: Representation of the fifteen spatial segments Regioni and their correspon-
dence with the sensing elements of the instrumented glove.

5.5 Encoding of the grasping interaction

This section proposes the descriptor used to model the tactile sensing signatures produced

during the interaction between the instrumented hand and the manipulated object. The

tactile sensing device Tekscan Grip consists of 360 sensing elements distributed by the

hand palm and finger surface, as presented in Figure 5.4. This work groups the 360

sensing elements in 15 regions (highlighted in red, Figure 5.4).
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The contact sensing output of each of these 15 regions Regioni of the hand is described

by the variable presented in equation 5.2 .

h
′

k = (h
′1, h

′2, . . . , h
′15)

h
′1, h

′2, . . . , h
′15 ∈ [0, 255] (5.2)

The variable h
′i (equation 5.3 ) represent the mean output of the tactile sensing ele-

ments hj belonging to the Regioni of the instrumented hand shown in Figure 5.4.

h
′i = mean( {∀j∈Regioni

hj} ) (5.3)

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Human demonstration of the grasping primitives: a) Primitive1, b)
Primitive2, c) Primitive3, d) Primitive4, e) Primitive5, f) Primitive6. Primitive7

corresponds to a grasp in which the hand does not contact the object.
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5.6 Recognition of the grasping primitive

5.6.1 Random variables of the model

The Bayesian model πgrasp presented in this section is used to discriminate different types

of grasp primitives during a manipulation task. A grasping primitive recognized by the

system, at time iteration k, is represented by the discrete random variable Gk, described

in equation 6.8.

Gk − ”Category of the grasping primitive.”

Gk ∈ {”Primitive1”, . . . , ”Primitive7”} (5.4)

This work considers that the system is able to recognize seven different grasping prim-

itives (equation 5.4). Six of these grasping primitives are demonstrated in Figure 5.5.

The remaining one, ”Primitive7”, corresponds to the situation when there is no contact

between the hand and the object.

The subset of seven grasping primitives was selected from an extended set of grasping

primitives presented in chapter 3. This subset was considered representative for the type

of manipulation tasks proposed in this work.

During each time iteration k, the interaction of the instrumented hand equipped with

the tactile sensing array and the manipulated object is described by the sensory output

h
′

k presented in equation 5.2. The level of tactile activation of each of those 15 regions h
′i

during the manipulation task is described by the discrete random variable Si presented

in equation 5.5.

Sk − ”Tactile activation descriptor of the instrumented hand at instant k.”

Sk = (S1, S2, . . . , S15)

Sik ∈ {”NotActive”, ”LowActive”, ”HighActive”} (5.5)

The tactile activation levels NotActive, LowActive, and HighActive are defined as

proposed in equation 5.6.
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”NotActive” : h
′i ∈ [0, 10]

”LowActive” : h
′i ∈ [11, 190]

”HighActive” : h
′i ∈ [191, 255] (5.6)

The 3 levels of discretization of the contact intensity are considered appropriate to

characterize and distinguish the fundamental functional levels of mobilization of the dif-

ferent regions of the hand. The proposed contact activation levels are used to distinguish

different stages of the interaction between the hand and object. Regions of the hand

corresponding to NotActive are involved in pre-grasp segments of the manipulation task

and in transitions between consecutive re-grasp. LowActive regions participate in initial

contact with the object and are partially involved in a stage of the manipulation task.

HighActive regions are highly involved in stabilization of the object.

5.6.2 Inference of the category of grasping primitive

The inference of the category of the grasping primitive Gk at each time iteration step k

is performed by the Bayesian model πgrasp presented in Figure 5.6a.

Based on the statistical independence relations between the random variables Gk and

Sk described in Figure 5.6a, the joint probability distribution function P (Gk,Sk|πgrasp) is

decomposed as summarized in Figure 5.6b and presented in equation 5.7.

P (Gk,Sk|πgrasp) = P (Sk|Gk, πgrasp)P (Gk|πgrasp) (5.7)

The factor P (Sk|Gk, πgrasp) expresses the likelihood of a specific grasping contact pro-

file, given a category of grasping primitive. This probability distribution function is

modelled by a histogram function as described in detail in section 5.6.3. The factor

P (Gk|πgrasp) expresses the a-priori probability distribution function of the category of

the grasping primitive. In this work, P (Gk|πgrasp) is modelled by a uniform probability

distribution function.

The category of grasping primitive Gk is inferred by running the Bayesian program

described in Figure 5.6b with the question proposed in equation 5.8.

P (Gk|sk, πgrasp) =
P (sk|Gk, πgrasp)P (Gk|πgrasp)∑

Gk

P (sk|Gk, πgrasp)P (Gk|πgrasp)
(5.8)
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(b)

Figure 5.6: Description of the Bayesian model πgrasp ”Recognition of the grasping primi-
tive”. a) Graphical representation. b) Bayesian program.



74 Chapter 5. Recognition of grasping primitives using tactile sensory data

The estimated category of the grasping primitive ĝk is given by equation 5.9 via Max-

imum a-Posteriori decision rule (MAP).

ĝk = arg max
Gk

P (Gk|sk, πgrasp) = arg max
Gk

P (sk|Gk, πgrasp)P (Gk|πgrasp) (5.9)

5.6.3 Determination of P (Sk|Gk, πgrasp)

The parameters of the histogram function modelling the probability distribution function

P (Sk|Gk, πgrasp) are learned during a training period. Each of the grasping primitives Gk

is demonstrated for a pre-defined number of training runs. For each training run, the cor-

responding contact signature of the instrumented hand Sk is acquired. After completing

the training runs, the parameters of the histogram function are statistically estimated.

This methodology is demonstrated during the presentation of the experimental results

(section 5.7.2).

5.7 Experimental results

5.7.1 Experimental setup

During the Human demonstrations of the in-hand manipulation tasks, the subject wears in

the right hand an instrumented glove (Cyberglove II ) with a tactile sensing array (Tekscan

Grip System) attached to the palm and fingers.

The objects that are placed on the top of a table are manipulated only with one hand

(right hand). The subject is seated during the demonstration of in-hand manipulation

tasks. The data from the tactile sensing array is sampled at 500 Hz. The configuration

of the tactile sensing array, as well as the typical configuration of the experimental area

during the task demonstration, are shown in Figure 5.8.

5.7.2 Learning of the grasping primitives P (Sk|Gk, πgrasp)

During the training period, a participant performs five runs demonstrating each of the

seven grasping primitives, illustrated previously in section 5.6. The data acquired from

the demonstrations is used to estimate the parameters of the probability distribution

function P (Sk|Gk, πgrasp) for each primitive Gk. The results of the learning stage of the

grasping primitives are shown in Figure 5.7.
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P(Sk | Gk, pgrasp) = 4/5 P(Sk | Gk, pgrasp) = 1/5

(a)

P(Sk | Gk, pgrasp) = 2/5 P(Sk | Gk, pgrasp) = 1/5 P(Sk | Gk, pgrasp) = 2/5

(b)

P(Sk | Gk, pgrasp) = 3/5 P(Sk | Gk, pgrasp) = 2/5

(c)

P(Sk | Gk, pgrasp) = 2/5 P(Sk | Gk, pgrasp) = 3/5

(d)

P(Sk | Gk, pgrasp) = 1/5 P(Sk | Gk, pgrasp) = 2/5 P(Sk | Gk, pgrasp) = 2/5

(e)

P(Sk | Gk, pgrasp) = 2/5 P(Sk | Gk, pgrasp) = 3/5

(f)

P(Sk | Gk, pgrasp) = 1

(g)

- “HighActive”

- “LowActive”

- “NotActive”

(h)

Figure 5.7: Illustration of the probability distribution function P (Sk|Gk, πgrasp) learned
from the human demonstration data (training period). a) Primitive1. b)Primitive2.
c)Primitive3. d)Primitive4. e)Primitive5. f)Primitive6. g)Primitive7. h) Colormap
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5.7.3 Detection of grasp primitives in manipulation tasks

The approach proposed in section 5.6, to segment a human manipulation task as a se-

quence of grasping primitives, was tested for two different tasks, as shown in Figure 5.8.

(a)

(b)

Figure 5.8: Human demonstration of the tasks. a) Task I: ”Mug reorientation”. b) Task
II: ”Mug displacement/elevation”.

During the execution of both tasks, the participant is seated comfortably in front of a

table. A mug is placed on top of the table in its initial configuration.

In Task I: ”Mug reorientation”, the participant rotates the mug around the longitudi-

nal axis. This rotation moves the the handle of the mug to a pose suitable to be grasped

by the right hand of the participant (Figure 5.8a).

In Task II: ”Mug displacement/elevation”, the participant grasps the mug and elevates

it along the direction of the longitudinal axis. The participant finishes the task by placing

the mug back on the table (Figure 5.8b).

The data acquired during the demonstrations of the two tasks was segmented and

time-averaged using a time window of 500 ms. Each time iteration k corresponds to a

temporal segment of the sensory data.

The results of the segmentation of the data and recognition of grasping primitives are

presented in Figure 5.9 (Task I: ”Mug reorientation”) and Figure 5.10b ( Task II: ”Mug

displacement/elevation”). In both tasks, the first segments are categorized as Primitive7.

The human hand is not contacting the object yet. The segments correspond to the reach-

to-grasp stage, when the hand moves toward the object which will be manipulated.

The runs of Task I: ”Mug reorientation” (figure 5.9) were segmented, by the Bayesian

model πgrasp, on a cyclic sequence of grasping (Primitive1, Primitive5) and releasing

(Primitive7) the object. The sequence was used to reorient the mug placed on top of
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g1 = Primitive7 g2 = Primitive7 g3 = Primitive1 g4 = Primitive7 g5 = Primitive5 g6 = Primitive7
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(b)

Figure 5.9: Grasping primitives ĝk inferred from the data acquired during the execution
of Task I: ”Mug reorientation”. a) Run 1. b) Run 2. Colormap represented in figure 5.7h.
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g1 = Primitive7 g2 = Primitive5 g3 = Primitive3 g4 = Primitive3 g5 = Primitive3

0 500 1000 1500 2000 2500

Time (ms)

(a)

g1 = Primitive7 g2 = Primitive3 g3 = Primitive3 g4 = Primitive3

0 500 1000 1500 2000 2500

Time (ms)

(b)

Figure 5.10: Grasping primitives ĝk inferred from the data acquired during the execution
of Task II: ”Mug displacement/elevation”. a) Run 1. b) Run 2. Colormap represented in
figure 5.7h.

the table. The sequence of grasp-release allows the participant to reposition the hand on

the object, adapting the grasp configuration to the new pose of the object. This strategy

promotes the maximization of the effect of the subsequent grasp primitive actuating the

object. The regions of the fingers recruited during the reorientation of the mug are pre-

dominantly the distal segments of the index, thumb, and middle fingers. These grasping

primitives are involved in actions requiring the fine and precise control of the movements

of the object: precision grasps.

The runs of Task II: ”Mug displacement/elevation” (Figure 5.10) were segmented, by

the Bayesian model πgrasp, on a continuous sequence of grasping primitives (Primitive3,

Primitive5). Due to the objective of the task (object displacement), the object was

not reoriented. The grasping primitives modelling the strategy are characterized by the

recruitment of larger extensions and with more intensity of the palm and surface of the

fingers. These primitives provide powerful grasps, contributing to the stability of the

execution of the task: power grasps.
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5.8 Conclusions

This work presents an approach to modeling the mechanisms underlying the strategies

performed by humans to perform manipulation tasks requiring the in-hand manipulation

(reorientation and repositioning) of objects. The description and representation of the

tasks is made symbolically by using a set of primitives defined on the tactile domain.

Each primitive represents a specific spatial distribution of tactile force intensities across

the palm and fingers.

The Bayesian model πgrasp was able to categorize different types of grasping primi-

tives using as input only the hand-object contact interaction signature. The sequence of

primitives modelling two different manipulation tasks was inferred by the Bayesian model

πgrasp. Task I required regrasping and precision grasps. Task II was demonstrated using

power grasps.
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