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Chapter 6

Categorization of soft objects during
haptic exploration tasks

6.1 Introduction

Due to the introduction of robotic platforms in new types of environments (chapter 1),

the principles and demands guiding the implementation of robotic platforms are changing.

The robotic systems need to interact autonomously with a wide variety of objects (size,

shape, compliance, and texture) [Feix et al., 2014]. The work presented in this chapter is

focused on the study of objects with different hardness-softness properties [Tiest, 2010].

Typically, the autonomous planning of a robotic manipulation task starts by the es-

timation of an initial model of the object, through the extraction of features from the

vision data, as described in chapter 2 and [Bohg, 2011]. The initial estimation of dis-

tance to object, shape affordances, and other characteristics of the surface is based on

previous perceptual experiences. It allows the robot to infer several parameters of the

reach-to-grasp movement and initial grasp required to hold the object without slipping.

The contributions presented in this chapter are associated with the manipulation move-

ments happening after this initial interaction. When the perceived model representing the

object is not sufficiently informative to perform the required task, the system uses the

robotic hand to explore the object progressively. The haptic exploration movements are

used to perceive complementary properties of the object such as hardness, texture, weight,

shape, and temperature (chapter 3).

This chapter presents a probabilistic spatial framework suitable to integrate multi-

modal data (vision, tactile, and motion) acquired during the interaction with an object.

The multi-modal data is used to build a perceptual model of the manipulated object

and infer the category of material being explored. The categories of material considered

in this chapter have different perceived hardness characteristics. In terms of hardness

characteristics, this work considers the perception that the robotic hand receives when

it interacts with objects made of compliant materials. The methods proposed in this
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chapter do not achieve a full, precise, and universal characterization of the objects as

studied in materials science (stiffness, Young’s modulus, mass spring system, finite element

methods). The approach presented in this chapter formulates a descriptor defined from

features extracted during the interaction between an exploratory element and a surface,

to discriminate different objects using its previous knowledge about a finite set of objects.

The description of the perceived hardness can contribute to the discrimination and

recognition of objects and adapt the manipulation strategies accordingly.

6.2 Related works

The study of deformable objects has been a research field explored extensively in very

different areas: computer vision [Dufour et al., 2011] (tracking, reconstruction, and recog-

nition), computer graphics [Garre et al., 2011] [Ni et al., 2011] (primarily for rendering

purposes), industrial materials sciences (very restricted and controlled tests and applica-

tions labs or clean rooms with high-accuracy measurement devices), medicine [Liu et al.,

2010a] [Ni et al., 2011] (organ analysis and anatomical abnormality detection, virtual

haptics simulation for medical training).

Table 6.1: Comparison between the contributions of this work and the related works

Study Apparatus Haptic Perception

Platform a Sensing b Approach c Features d

This work HH HS P CI, CD
[Okamura et al., 2001] RS HS D C

[Oddo et al., 2011] RS HS D V, T
[Hongbin Liu, 2011] RS HS P F

[Fishel and Loeb, 2012] RS HS P CD, CI, V, H
[Hui and Kuchenbecker, 2014] RS HS D CI, CD

[Xu et al., 2013] RS HS P CI, V, T
[Faria et al., 2012] HH HS, VS P C, L

[Chitta et al., 2011] RS HS D CI
[Frank et al., 2010] RS HS, VS D L, CI, CD

a RS- robotic system; HH- human hand.
b HS- haptic sensing; VS- visual sensing.
cP- probabilistic; D- deterministic.
d T- texture; C- curvature; F- friction coefficient; L- RGBD cloud points; CI- contact intensity; CD-
contact indentation; V- micro-vibration; H- heat flow.

Typically, soft objects can be represented by 3D computational models in the discrete

(e.g. mass spring systems) or continuous (e.g. finite element methods) domain. This type

of computational model provides an accurate description of the dynamics of soft objects.

However, the elaboration of this type of model by an autonomous robotic platform faces

several challenges and constraints.

Some experimental conditions of the material sciences laboratories are difficult to repli-

cate in the context of autonomous robotic manipulation (restrictions on hardware design:

hand dexterity, calibration accuracy of tactile and vision sensors, real-time computational
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power, and energy efficiency). Additionally, autonomous robotic platforms must deal with

the uncertainty associated with the dynamics of the environment and noise of the data

measurements.

In the cognitive autonomous robotic manipulation field, different approaches have been

proposed to improve the perceived representation of the object during the manipulation

and exploration tasks. Some approaches are dedicated to the estimation of the surface

characteristics of the object, such as texture and stickiness. [Hongbin Liu, 2011] proposes

an algorithm to categorize objects using the surface friction properties. The friction

coefficients of the surfaces are estimated from force and torque data sensed by a robotic

finger.

The work by [Oddo et al., 2011] proposes the design of a robotic fingertip with an

artificial haptic perception system for surface texture discrimination. [Okamura et al.,

2001] proposes a method to identify different types (cusp, step, and bump) of surface

features during the lateral sliding of a robotic finger.

Recently, several works have used the Biotac robotic fingertip to discriminate objects.

This compact device replicates the anatomic characteristics of a human fingertip, being

capable of sensing temperature, micro-vibration, and pressure. [Fishel and Loeb, 2012]

applied lateral sliding movements of a metallic bar equipped with Biotac to recognize

different textures. The work also studied the impact of velocity and pressure of lateral

sliding movement to the performance of the system. The work by [Hui and Kuchenbecker,

2014] used the Biotac device integrated on the tip of a probe to explore simulated sam-

ples of tissues. Haptic palpation was used to recognize lumps on tissues by integrating

pressure and indentation depth features. The work of [Xu et al., 2013] integrates Biotac

fingertip on a Shadow robotic hand and performs two types of exploratory movements

to extract three type of haptic features: texture (lateral sliding movement), compliance

(palpation/press-and-release), and heat flow (palpation/press-and-release). These three

features are integrated simultaneously to discriminate different classes of objects.

Other works are focused on representing the perceived shape of the object to find

suitable regions for stable grasping. [Faria et al., 2012] builds a volumetric representation

of the shape of the object as long as the object is progressively explored. The repre-

sentation is decomposed in volumetric primitives, and the best elementary regions for

stable grasping are identified based on human demonstrations. [Chitta et al., 2011] infers

the internal state (empty, full, open, closed) and recognizes objects using deformation

signatures during a haptic exploration task. The approach only uses tactile data.

The work of [Frank et al., 2010] tries to integrate information from a vision and

force/torque sensing system to estimate the elasticity properties of objects during a haptic

exploration task. The work establishes a relation between the deformation induced by the
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robotic end-effector and the intensities of the sensed forces. Different objects have distinct

deformation / force intensity signatures. The work does not use a dexterous robotic hand

to interact with the object. A rectangular bar is used to explore the environment.

The motivation for this work is introduced in section 6.1. The proposed approach is

summarized in section 6.3 and compared with related works in Table 6.1.
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Figure 6.1: Schematic representation of the action-perception loop involved in the haptic
exploration of surfaces. The elements highlighted with bold border are discussed in this
chapter.

6.3 Approach overview

To endow the robotic systems with the capability to recognize and categorize distinct

materials (different hardness-softness properties), the approach presented in this chapter

analyses the principles and strategies used by humans to perform such types of tasks. The

capability to discriminate the materials results from the integration of different types of

haptic data.

During the haptic exploration tasks, the perception and discrimination of hardness-
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Figure 6.2: Global architecture of the approach presented in this chapter. The main con-
tributions are identified and referenced in the scheme (description of the sensing appara-
tus, estimation of the contact interaction parameters, local perception of haptic stimulus,
and post-processing of haptic stimulus map). The variables involved in the flow of data
are summarized in Table 6.2.

Table 6.2: Summary of the relevant variables used in this chapter

Variable Description Domain
v Cell of the workspace grid. R2

k Time / exploration iteration. N0

h(v,k) Raw haptic sensing data acquired on v. Rn ∗

cP Contact sensing: intensity. R+
0

cA Contact sensing: area. R+
0

cD Contact sensing: indentation distance. R+
0

M(v,k) Material category of v {Material1, . . . ,Material3}
A(v,k) Cutaneous contact interaction parameters. R2

N(v,k) Kinesthetic contact interaction parameters. R2

H(v) Entropy of the grid cell v. R
∗ In this work, the description of the sensory apparatus of the instrumented hand platform follows a
generic formulation. In this context, n represents the dimensionality of the raw sensing data provided
by the haptic sensory apparatus of the robot.
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softness characteristics of objects depends on the simultaneous integration of cutaneous

and kinesthetic information by performing ”press-and-release” movements [Lederman and

Klatzky, 1987] - active haptic perception. This haptic exploration strategy and integra-

tion of multi-modal data was demonstrated by psychophysical experiments performed in

[Srinivasan and LaMotte, 1995] and [Lederman and Klatzky, 1987], respectively.

As described in detail in chapter 3 and shown using a simplified representation in

Figure 6.1, several types of haptic features can be extracted from the cutaneous and

kinesthetic data. In this chapter, the human hand is instrumented with a tactile sensing

array and a motion tracking system, described in section 6.4.

The haptic data is subjected to a feature extraction processing pipeline formulated

in chapters 6.5.1 (extraction of contact sensing features) and 6.5.2 (extraction of contact

interaction parameters). The features extracted in the previous stages are integrated by

the Bayesian model πhaptic ”Local Perception of the Haptic Stimulus” (chapter 6.6).

The Bayesian model πhaptic infers and updates the category of material describing the

region of the workspace which was explored. The workspace is represented by a planar 2D

probabilistic (inference) grid (details about this representation framework are provided in

chapter 2). The description of the perceived category of material is updated after each

haptic exploration iteration step, integrating new sensory inputs on the haptic processing

pipeline and on the Bayesian model πhaptic.

This representation framework is suitable to integrate noisy multi-modal sensory in-

puts from multiple exploratory elements (dexterous robotic hands). The grid also allows

the representation of non-homogeneous objects/surfaces.

In this chapter, a exploration iteration step corresponds to a press-and-release ex-

ploration movement. This is the exploration pattern used to extract hardness-softness

properties of objects (literature review presented in chapter 3). The perceived spatial

representation of the object is improved and optimized using methods presented in sec-

tion 6.7.

In the approach proposed in this chapter, the press-and-release movements are per-

formed at pre-defined locations of the workspace. In the next chapter of this thesis

(chapter 7), the the regions of the workspace which are going to be explored next are in-

ferred online and autonomously as the exploration progresses (closes the action-perception

loop).

6.4 Haptic sensory data

During the haptic exploration of an object, the sensory apparatus interacts with the object

producing raw sensory outputs represented by the variable h(v,k). The type of sensory
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Figure 6.3: Partial representation of the bidimensional grid framework, which is used to
describe the workspace region (e.g.: sponge object).

outputs h(v,k) produced during the exploration process is dependent on the technology and

design of the sensing apparatus (force, torque, tactile, temperature, vibration; single point,

array), as well as the type of movement strategy used to perform the haptic exploration.

The methods proposed in this chapter are defined following a generic formulation.

This work considers that the agent involved in the exploration process is equipped with

a tactile sensing array and that the exploration strategy consists of a sequence of ”press-

and-release” (palpation) movements.

Thus, at each time iteration k, the haptic sensory output resulting from the interaction

between the exploratory element and the material at the region v of the workspace is

described by the variable presented in equation 6.1.

h(v,k) = (h1, h2, . . . , hN , hX , hY , hZ)

h1, h2, . . . , hN ∈ R+
0 , hX , hY , hZ ∈ R (6.1)

The variables h1, h2, . . . , hN , represent the tactile sensing outputs of each of the N

elements of the tactile sensing array. The outputs hi express the contact intensity sensed

by each element of the array. The Cartesian coordinates of the end-effector of the explo-

ration system are expressed in the inertial reference frame {W} and represented by the

variables hX , hY , hZ .

A cell v of the bidimensional grid and the inertial reference frame {W} are illustrated

in Figure 6.3.
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hZ0

hZ

cD cA

press-and-release movement
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Figure 6.4: Schematic representation of the contact sensing variables extracted during the
haptic exploration of a surface. Variables described in section 6.5. Image adapted from
[van Kuilenburg et al., 2013].

6.5 Pre-processing of the haptic sensory data

6.5.1 Determination of the contact sensing features cP , cD, cA

The sensory outputs h(v,k) presented in equation 6.1 are processed to extract features

modelling the contact interaction behaviour of the material. A description of the contact

sensing features is presented in Figure 6.4.

The total intensity of the contact is described by the variable cP presented in equation

6.2. This variable corresponds to the total sum of the individual outputs of the elements

hj of the tactile array.

cP =
N∑
j=1

hj (6.2)

As long as the ”press-and-release” exploration movement is performed, the area of the

tactile sensing array contacting the surface of the object changes. This area is described

by the variable cA described in equation 6.3 .
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cA = ϑha

ϑ = #{∀hj : hj > 0}

cA ∈ [0, Nha] (6.3)

The total area of contact interaction is determined by the number of active tactile

sensing elements of the array, ϑ, and the area, ha, of each element of the array, as described

in equation 6.3. A sensing element of the tactile array is considered active if its individual

output hj is higher than zero (equation 6.3). This means that if a sensing elements is

contacting the object, the sensing element is active.

In this work, the objects to be explored are made of soft materials. Thus, during a

”press-and-release” exploration movement, the deformation of the surface of the object

can be described by the variable cD, as shown in equation 6.4 and illustrated in Figure

6.4.

cD = hZ − hZ0

cD ∈ R+
0 (6.4)

This work considers that the ”press-and-release” exploration motion is performed uni-

axially along the Z axis of the inertial reference {W}. Considering this, cD measures the

indentation distance, hZ , of the exploratory element relative to the point where it made

the initial contact with the natural surface of the object, hZ0 .

The contact sensing features cA, cP , cD extracted from the haptic sensory data h(v,k)

are used as input to the estimation of the contact interaction parameters described in

section 6.5.2.

6.5.2 Estimation of the cutaneous and kinesthetic interaction

parameters

During a ”press-and-release” exploration movement, several samples of the features cA,

cP , cD are acquired. The profile represented by the set of the corresponding data points

(cA, cP , cD) encodes relevant information about the haptic characteristics of the material

being explored and can be used to discriminate different classes of materials.

The categorization of different materials based on their contact interaction signature

can be performed by integrating two different sources of information. As demonstrated by

[Scilingo, 2010], the simultaneous integration of information related to cutaneous tactile
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sensing (relation between contact intensity and contact area) and information related

to kinesthetic sensing (relation between contact intensity and contact indentation level)

during a haptic exploration task, is essential to perceive and discriminate soft materials

based on their haptic properties. This multi-modal integration is also essential to resolve

some ambiguities which can occur if each of type of information is used separately.

Considering an exploratory element with a spherical design [Scilingo, 2010] (e.g.: hu-

man fingertip), the cutaneous component of the contact interaction signature is described

by the relation presented in equation 6.5.

cP = a1c
3
2
A + a2

a1, a2 ∈ R (6.5)

The kinesthetic component in the contact interaction signature is described in equation

6.6 .

cP = n1c
3
2
D + n2

n1, n2 ∈ R (6.6)

The constants a1, a2 and n1, n2 are the cutaneous and kinesthetic interaction parame-

ters, respectively. These parameters are different for each class of materials. They encode

the signature of the dynamic behaviour of the material during a ”press-and-release” ex-

ploration movement. The behaviour is related to the haptic properties of that material.

The parameters can be used as descriptors of the class of the materials to discriminate

objects made of different materials.

Given some data cA, cP , cD resulting from a ”press-and-release” exploration move-

ment, the parameters a1, a2 and n1, n2 are estimated using the method MLE (Maximum

Likelihood Estimation). The general goal of this method is to identify the parameters of

the models presented in equations 6.5 and 6.6 which are most likely to have generated the

set of data points cA, cP , cD.

The next section presents the Bayesian model proposed in this chapter to discriminate

different classes of materials.

6.6 Perception of the haptic stimulus map

This section proposes a Bayesian model to infer the perceived category of haptic stimulus

(class of material) from the contact and kinesthetic interaction parameters extracted
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Figure 6.5: Bayesian model πhaptic Perception of the haptic stimulus map. a) Graphical
representation. b) Bayesian program.
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from the sensory data h(v,k). The Bayesian model πhaptic is presented in Figure 6.5a

and described in detail in the next sections.

6.6.1 Random variables of the model

The perceived category of the haptic stimulus is modelled by the discrete random variable

M(v,k), as described in equation 6.7. N is the total number of different materials which

can be discriminated by the system.

M(v,k) − ”Material category of v”

M(v,k) ∈ {Material1, . . . ,MaterialN} (6.7)

In this Bayesian model, the information about the cutaneous contact interaction is

integrated by the continuous random variable A(v,k), detailed in equation 6.8.

A(v,k) − ”Cutaneous contact interaction parameters”

A(v,k) = (a1, a2)

A(v,k) ∈ R2 (6.8)

Conversely, the information encoded by the kinesthetic interaction parameters is de-

scribed by the continuous random variable N(v,k), presented in equation 6.9.

N(v,k) − ”Kinesthetic contact interaction parameters”

N(v,k) = (n1, n2)

N(v,k) ∈ R2 (6.9)

The description and methods used to determine the parameters a1, a2, n1, n2 from

the haptic sensory data h(v,k) are presented in section 6.5.2.

6.6.2 Inference of the haptic stimulus category

Figure 6.5a shows a graphical representation of the Bayesian model proposed in this chap-

ter. It describes the statistical independence relationship between the random variables

M(v,k), A(v,k) and N(v,k) of the model. Considering the relations presented in Figure 6.5a,

the joint probability distribution function P (M(v,k), N(v,k), A(v,k)|πhaptic) can be decom-
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posed as presented in Figure 6.5b and equation 6.10.

P (M(v,k), N(v,k), A(v,k)|πhaptic) =

= P (N(v,k)|M(v,k), πhaptic)P (A(v,k)|M(v,k), πhaptic)P (M(v,k)|πhaptic) (6.10)

The factors P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic) express the likelihood of

having specific measurements of kinestethic n(v,k) and cutaneous a(v,k) contact interaction

parameters for a given type of material (haptic stimulus) M(v,k). P (M(v,k)|πhaptic) is the

a-priori probability of exploring a specific type of material.

The probability distribution function modelling the category of the haptic stimulus

(type of material) is formulated from equation 6.10, as described in equation 6.11.

P (M(v,k)|n(v,k), a(v,k), πhaptic) =

=
P (n(v,k)|M(v,k), πhaptic)P (a(v,k)|M(v,k), πhaptic)P (M(v,k), πhaptic)∑

M(v,k)

P (n(v,k)|M(v,k), πhaptic)P (a(v,k)|M(v,k), πhaptic)P (M(v,k), πhaptic)
(6.11)

The category of the haptic stimulus is inferred using the Maximum a-Posteriori (MAP)

decision rule, as described in equation 6.12.

m̂(v,k) = arg max
m(v,k)

P (M(v,k)|n(v,k), a(v,k), πhaptic)

m̂(v,k) = arg max
m(v,k)

P (n(v,k)|M(v,k), πhaptic)P (a(v,k)|M(v,k), πhaptic)P (M(v,k)|πhaptic) (6.12)

Each of the factors involved in the inference of m̂(v,k) is modelled by a probability

distribution function presented in Figure 6.5b and detailed in section 6.6.3.

6.6.3 Determination of P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic)

The probability distribution functions P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic)

are normal probability distribution functions. Thus, both are modelled by bi-dimensional

Gaussian functions as described by equations 6.13 and 6.14.

P (N(v,k)|M(v,k), πhaptic) ≡ NN(µ(M),Σ(M)) (6.13)
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P (A(v,k)|M(v,k), πhaptic) ≡ NA(µ(M),Σ(M)) (6.14)

For each of the reference materials M(v,k) recognized by the system, the mean µ and

covariance matrix Σ of the functions NN and NA are learned during a training period.

In this training period, a sample of each reference material recognized by the system

is explored during several ”press-and-release” movements. The (cP , cA, cD) data acquired

during each of the ”press-and-release” cycles are used to determine the contact interac-

tion parameters (a1, a2) and (n1, n2) for that material, using the Maximum Likelihood

Estimation (MLE) method.

After a pre-defined number of press-and-release cycles, the average µ values of (a1, a2)

and (n1, n2) are determined, as well as the respective covariance matrix Σ.

6.7 Post-processing of haptic stimulus map

As mentioned in the previous section, the haptic properties of the objects explored in the

workspace are represented using a probabilistic (inference) grid. The formulation of this

type of representation framework (analogous to an occupancy grid) considers that the

representation of each grid cell v is independent from the remaining cells v of the grid

(see details in section 2). This assumption frequently originates from unexplored grid cells

having high uncertainty, even if those regions are surrounded by cells which were explored,

having an informative haptic description assigned to them and thus a lower uncertainty.

This section proposes a method which is applied to the final haptic stimulus map

provided by the Bayesian model πhaptic presented in section 6.6. The methods proposed

in this chapter consider some constraints derived from the physical world. The physical

world (explored object) has spatial structure; thus, it is expected to find local spatial

continuity in the haptic perceptual characterization of contiguous grid cells.

The methods proposed in this section improve the perceptual representation of the

haptic properties of the object by estimating the representation of unexplored grid cells

based on the representation of neighbour cells which were explored.

The set of unexplored grid cells is defined by the variable ϑunexpl. The haptic descrip-

tion of an unexplored cell is estimated as the weighted mean of the haptic description of

the eight grid cells surrounding that cell, as described in 6.15.
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∀v ∈ ϑunexpl, P (M(v,k)|N(v,k), A(v,k), πhaptic) =

∑8
j=1

1
H(vj)

P (M(vj,k)|N(vj,k), A(vj,k), πhaptic)∑8
j=1

1
H(vj)

(6.15)

H(vj) is the entropy of the grid cell vj (more details in chapter 2). The weights 1
H(vj)

of the extrapolation method assign a higher contribution to the representation of grid cells

with lower entropy H(vj) (less uncertainty). vj represents each of the eight neighbour

cells of v. The determination of the entropy of a random variable is detailed in section 2.

6.8 Experimental results

6.8.1 Experimental setup

The methods proposed in this work were tested using a human hand as exploration agent.

The right hand of the participant was instrumented with a tactile sensing array Tekscan

Grip System (Tekscan Inc, Boston, MA, U.S.) and a motion tracking system Polhemus

Liberty (Polhemus Inc, Colchester, VT, U.S.). The instrumented hand is shown in Figure

6.6b.

The tactile sensing array is attached to the surface of the fingers using glue tape. It

provides information about the spatial configuration of the regions of the hand contacting

the object, the intensity, and the area of contact (cutaneous information). In this work,

only one pad (array with 16 = 4 × 4 sensing elements) of the Tekscan Grip System is

attached to the index fingertip (Figure 6.6b) (Figure 6.6a). The output of each sensing

element of the array is an eight-bit integer. This work considers the raw outputs of the

tactile sensing array without prior calibration. A method, called equilibration, proposed

by the manufacturer of the system, is applied before each run of the data acquisition. The

method is used to compensate for unexpected variations of the output between sensing

elements. The data of each tactile sensing element is sampled at 50 Hz.

One sensor of the motion tracking device Polhemus Liberty was attached using glue

tape to the same index fingertip of the tactile sensing array, as shown in Figure 6.6b.

This motion tracking sensor provides information about the 6D pose (3D position, 3D

orientation) of the fingertip and inherently of the tactile sensing array. This data provided

the kinesthetic component of the interaction, related to the indentation depth of the

fingertip in the natural shape of the object. The motion tracking sensor was sampled at

approximately 30 Hz.

The multi-modal data samples were individually timestamped in millisecond ms reso-
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(a) (b)

Figure 6.6: Instrumented finger involved in the haptic exploration of objects. a) global
overview. b) detailed view of the integration of the Tekscan Grip system and the motion
tracking sensor Polhemus Liberty.

lution by the software applications developed for each of the data acquisition devices (see

chapter 4). The clocks of the different computers involved in the architecture of the data

acquisition were synchronized using Network Time Protocol (NTP) (see chapter 4).

6.8.2 Learning of the contact interaction parameters of the ref-

erence materials

Experimental protocol

During the learning stage of the contact interaction parameters (a1, a2), and (n1, n2),

physical samples of three reference materials Material1, Material2, and Material3 are

selected and placed in the experimental area.

The samples selected for this work are presented in Figure 6.7. They were selected to

represent common objects of daily life and to have distinct haptic properties. Material1,

Material2, and Material3 were evaluated empirically by a human operator (exploration

using a non-instrumented human hand) and have increasing levels of perceived hardness,

respectively.

Each of the reference materialsMaterial1, Material2, andMaterial3 was submitted to

ten press-and-release exploration cycles using the index fingertip of the instrumented hand,

as presented in Figure 6.6b. All the press-and-release exploration cycles were performed

in the same region of the surface of the object. Thus, the subject applies a unidirectional

movement perpendicular to the natural shape of the physical samples of the reference

materials (Figure 6.7d).
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(a) (b) (c)

cD cD cD

{ W } Y
X

Z
{ W } Y

X
Z { W } Y

X
Z

(d)

Figure 6.7: Reference materials a) Material1. b) Material2. c)Material3. d) Demon-
stration of the press-and-release exploration pattern.

Estimation of P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic)

The contact sensing features cP , cA, and cD extracted from the haptic sensory data h(v,k)

during all ten press-and-release exploration movements are presented in Figure 6.8, 6.9,

and 6.10, for each of the reference materials Material1, Material2, and Material3, re-

spectively.

For all the reference materials, during each of the ten press-and-release movements, as

the press segment of the movement progresses, the contact intensity cP , contact area cA,

and contact indentation level cD increase, as long as the press movements progress. During

the release segment, they decrease. This work only uses segments from the press explo-

ration movements. The contact sensing features cP , cA, cD from the ten press segments of

the press-and-release cycles for Material1, Material2, and Material3 are represented in

Figure 6.11.

However, although the global behaviour is analogous, each of the reference materials

has its own characteristic profile. That unique profile is specified by the contact interaction

cutaneous (a1, a2) and kinesthetic (n1, n2) parameters.

For each of the press segments of the press-and-release exploration movement, the

parameters (a1, a2) and (n1, n2) were estimated using the MATLAB Curve Fitting Toolbox

(The MathWorks Inc, MA, U.S.). The results are shown in Table 6.3, Table 6.4, and Table

6.5, for Material1, Material2, and Material3, respectively. The curve fitting errors, sum
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Figure 6.8: Typical temporal profile of the variables cP , cA, and cD during ten press-and-
release exploration movements of Material1.
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Figure 6.9: Typical temporal profile of the variables cP , cA, and cD during ten press-and-
release exploration movements of Material2.
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Figure 6.10: Typical temporal profile of the variables cP , cA, and cD during ten press-
and-release exploration movements of Material3.
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Figure 6.11: Typical contact interaction profile (cP , cA, cD) of Material1, Material2,
Material3.
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Table 6.3: Contact interaction parameters N(v,k) (kinesthetic) and A(v,k) (cutaneous) for
Material1

Exploration N(v,k) A(v,k)

Run n1 n2 ΦN a1 a2 ΦA

1 83.1 15.6 7706.7 2.9 10.1 12997.9
2 66.7 18.7 9977.2 3.4 2.8 19108.7
3 70.1 19.8 4518.4 3.2 2.3 8505.6
4 74.2 11.8 6777.1 3.3 14.5 5485.2
5 66.4 10.5 4493.4 3.0 20.9 5285.1
6 67.4 10.8 4868.4 3.1 14.1 3389.3
7 66.7 18.8 6408.7 3.6 15.1 15691.7
8 102.4 19.1 3109.7 2.6 18.9 1773.5
9 82.8 -2.8 2793.3 2.8 17.4 3036.6
10 72.6 16.9 5570.4 2.3 18.5 3750.4

Table 6.4: Contact interaction parameters N(v,k) (kinesthetic) and A(v,k) (cutaneous) for
Material2

Exploration N(v,k) A(v,k)

Run n1 n2 ΦN a1 a2 ΦA

1 493.6 30.2 1715.9 3.0 -0.7 415.4
2 467.9 -3.4 2147.5 2.8 12.1 5172.4
3 380.4 -7.7 1989.5 2.9 5.5 1182.3
4 436.0 -16.9 3571.0 2.9 0.1 1290.9
5 679.7 7.9 625.6 2.4 7.3 572.4
6 604.2 -1.3 450.5 2.8 0.0 1372.9
7 525.9 4.0 4496.3 2.1 14.4 446.1
8 177.2 38.9 9807.9 3.8 -9.7 2282.8
9 385.8 4.6 1723.4 3.1 6.4 389.9
10 175.5 40.0 8935.9 3.0 -0.2 818.8

Table 6.5: Contact interaction parameters N(v,k) (kinesthetic) and A(v,k) (cutaneous) for
Material3

Exploration N(v,k) A(v,k)

Trial n1 n2 ΦN a1 a2 ΦA

1 2030.4 -31.2 5091.9 10.6 -64.7 70064.9
2 952.6 -112.6 69435.6 10.1 -48.1 35691.9
3 1858.4 -30.2 31394.8 12.9 -117.7 165029.3
4 2144.5 -48.8 26389.5 11.2 -91.4 132650.9
5 183.6 213.1 671769.1 10.5 -44.2 101726.5
6 2154.0 -17.1 13875.6 9.8 -37.2 36101.0
7 2128.4 -8.0 19706.1 12.2 -91.1 239131.8
8 2204.5 -14.4 8201.4 10.6 -69.5 104792.6
9 1818.9 -45.8 19224.5 10.9 -73.1 103725.3
10 1357.5 68.1 410851.5 10.3 -59.8 164797.7
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Table 6.6: LearMean (µ) and co-variation matrix (Σ) parameters learned from the data
in Table 6.3, Table 6.4, and Table 6.5

Parameters Material1 Material2 Material3
µN

(
75.2 13.9

) (
432.6 9.6

) (
1638.3 −2.7

)
ΣN

(
117.4 −3.5

−3.5 42.5

) (
24042.6 −1626.1

−1626.1 356.2

) (
396276.5 −32354.7

−32354.7 6959.4

)
µA

(
3.0 12.5

) (
2.9 3.5

) (
10.9 −69.7

)
ΣA

(
0.1 −1.1

−1.1 38.1

) (
0.2 −2.4

−2.4 44.9

) (
0.8 −20.2

−20.2 554.2

)

of squared 2-norm of the residuals, are represented by the variables ΦN and ΦA and

reported in Table 6.3, Table 6.4, and Table 6.5. The determination of ΦN and ΦA is

described in equations 6.16 and 6.17. S represents the number of sensory samples used

in each trial as input to the curve fitting method.

ΦN =
S∑
i=1

(cP,i − (n̂1c
3
2
D,i + n̂2))2 (6.16)

ΦA =
S∑
i=1

(cP,i − (â1c
3
2
A,i + â2))2 (6.17)

The results in Tables 6.3, 6.4, and 6.5 are used to determine the parameters average µA,

µN and co-variance matrices ΣA, ΣN for each of the reference materials, as presented in

Table 6.6. These parameters, which are learned from the training data, are used to specify

the probability distribution functions P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic),

represented in Figure 6.12, Figure 6.13, and Figure 6.14.

The probability distribution functions are used in section 6.8.3 to infer the haptic

properties of objects unknown to the system.

Evaluating the learned parameters of P (N(v,k)|M(v,k), πhaptic) and P (A(v,k)|M(v,k), πhaptic)

The evaluation of the probability distribution functions P (N(v,k)|M(v,k), πhaptic) and

P (A(v,k)|M(v,k), πhaptic) learned from the experimental data is performed following the

cross-validation scheme leave-one-out. For each reference material, P (N(v,k)|M(v,k), πhaptic)

and P (A(v,k)|M(v,k), πhaptic) are learned from nine of the ten press segments of the press-

and-release exploration movements and tested for the remaining. The categorization of

the sample (n1, n2), (a1, a2) is made according to equation 6.18.
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(a) (b)

Figure 6.12: Graphical representation of the probability distribution functions learned
from Material1 data. a) P (N(v,k)|M(v,k), πhaptic). b) P (A(v,k)|M(v,k), πhaptic).

(a) (b)

Figure 6.13: Graphical representation of the probability distribution functions learned
from Material2 data. a) P (N(v,k)|M(v,k), πhaptic). b) P (A(v,k)|M(v,k), πhaptic).

(a) (b)

Figure 6.14: Graphical representation of the probability distribution functions learned
from Material3 data. a) P (N(v,k)|M(v,k), πhaptic). b) P (A(v,k)|M(v,k), πhaptic).
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Table 6.7: Confusion table for the categorization of Materiali (ground truth) as M.i
(perceived category) by the Bayesian model πhaptic, using a leave-one-out cross-validation
scheme

M.1 M.2 M.3
Material1 0.82 0.18 0.00
Material2 0.00 1.00 0.00
Material3 0.00 0.00 1.00

{ W } X
Y

(a)

{ W }

Y
X

(b)

{ W } X
Y

(c)

Figure 6.15: Unknown objects a) Object1 b) Object2 c)Object3.

m̂(v,k) = arg max
m(v,k)

P (n(v,k)|M(v,k), πhaptic)P (a(v,k)|M(v,k), πhaptic)P (M(v,k)|πhaptic) (6.18)

Table 6.7 presents the confusion table resulting for the cross-validation of the Bayesian

model πhaptic following a leave-one-out scheme.

The results presented in Table 6.7 show that the proposed Bayesian model πhaptic has

a high capability to discriminate the proposed reference materials. The model shows only

a minimal confusion in the discrimination of Material1 and Material2.

6.8.3 Haptic exploration of unknown objects

Experimental protocol

After the learning stage of the Bayesian model πhaptic for the reference materialsMaterial1,

Material2, and Material3, the model πhaptic can be used to infer the similarity of haptic

properties of new objects unknown to the system with the reference materials previously

learned by the system. This work proposes the haptic exploration of three new objects,

Object1, Object2, and Object3, presented in Figures A, B, and C, respectively.

The workspace region is partitioned on a bi-dimensional inference grid. Each cell is

a square of 1cm side. Each of the new objects is placed in this workspace region and

explored in five pre-defined regions of the surface, using a total of ten press-and-release

exploration movements (two press-and-release movements per region). The list of five
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Table 6.8: Pre-defined coordinates of the cells on the grid where the press-and-release
exploration movements are performed

Object1 Object2 Object3
Region1 (3,3) (5,5) (3,3)
Region2 (4,6) (12,7) (4,6)
Region3 (3,8) (5,8) (3,8)
Region4 (5,3) (20,5) (5,3)
Region5 (5,8) (20,8) (5,8)
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Figure 6.16: Typical temporal profile of the variables cP , cA and cD during press-and-
release exploration movements of Object1.

pre-defined regions is proposed in Table 6.8.

The hand of the subject performing the haptic exploration of the new objects is in-

strumented with the same tactile sensing array Tekscan Grip System and motion tracking

sensor Polhemus Liberty, as presented in Figure 6.6b.

Representation and update of the haptic stimulus map of unknown objects

The profile of the contact sensing features cP , cA, cD (gathering the data from the ten

exploration movements) of each of the new objects is presented in Figures 6.19, 6.20, and

6.21.

The temporal evolution of the haptic representation of each of the unknown objects

Object1, Object2, and Object3 is illustrated in Figures 6.23, 6.24, and 6.25 and detailed in

Tables 6.9, 6.9, and 6.9. Initially, (k = 0), and all the cells v of the workspace are described

by a uniform probability distribution function P (M(v,k)|A(v,k), N(v,k), πhaptic) ≡ Uniform.

As long as the exploration of the unknown objects progresses (k = 1, . . . , k = 10) in

the pre-defined regions listed in Table 6.8, the representation of those regions improves
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Figure 6.17: Typical temporal profile of the variables cP , cA and cD during press-and-
release exploration movements of Object2.
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Figure 6.18: Typical temporal profile of the variables cP , cA and cD during press-and-
release exploration movements of Object3.
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Figure 6.19: Typical contact interaction profile (cP , cA, cD) of Object1, compared with
Material1, Material2, Material3.
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Figure 6.20: Typical contact interaction profile (cP , cA, cD) of Object2, compared with
Material1, Material2, Material3.
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Figure 6.21: Typical contact interaction profile (cP , cA, cD) of Object3, compared with
Material1, Material2, Material3.

P(M(v,k) =”Material3”| a(v,k) , n(v,k) , πhaptic) = 1 

P(M(v,k) =”Material1”| a(v,k) , n(v,k) , πhaptic) = 1 P(M(v,k) =”Material2”| a(v,k) , n(v,k) , πhaptic) = 1 

Figure 6.22: Colormap used to represent P (M(v,k)|N(v,k), A(v,k), πhaptic).

remarkably.

The regions of Object1 are described as being similar (higher probability) toMaterial1.

Some of these regions improve their representation by integrating additional haptic data

acquired in the exploration cycles. Two of the regions of Object1 show a contact interac-

tion behaviour recognized as Material2.

Alternatively, all the explored regions of Object2 and Object3 are described as be-

ing made of materials with a contact interaction behaviour similar to Material2 and

Material3, respectively. Since the initial exploration cycles, that tendency is evident.

Extrapolation of the representation of unexplored grid ells

The final representation of the workspace of Object1, Object2, and Object3 are processed

in an effort to improve the representation of the unexplored cells. The method presented

in section 6.7 intends to reduce the uncertainty of the representation of the workspace by

reducing the entropy of the representation. The results are shown in Figure 6.26.

By comparing Figures 6.23c, 6.24c, 6.25c, and 6.26, the extension of uncertain re-

gions is reduced. The extension of regions characterized as being similar to Material1,
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(a) (b) (c)

Figure 6.23: Probabilist representation of the result of the haptic exploration of Object1.
a) Initial representation (k = 0). b) Representation after five press-and-release movements
(k = 5). c) Representation after five press-and-release movements (k = 10). Colormap
described in Figure 6.22.

(a) (b) (c)

Figure 6.24: Probabilist representation of the result of the haptic exploration of Object1.
a) Initial representation (k = 0). b) Representation after five press-and-release movements
(k = 5). c) Representation after five press-and-release movements (k = 10). Colormap
described in Figure 6.22.

(a) (b) (c)

Figure 6.25: Probabilist representation of the result of the haptic exploration of Object1.
a) Initial representation (k = 0). b) Representation after five press-and-release movements
(k = 5). c) Representation after five press-and-release movements (k = 10). Colormap
described in Figure 6.22.
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Table 6.9: Evolution of the probability distribution function P (M(v,k)|n(v,k), a(v,k), πhaptic)
during the exploration of Object1

Initial condition
(k = 0)

1st exploration cycle
(k = 1, . . . , 5)

2nd exploration cycle
(k = 6, . . . , 10)

Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3
Region1 0.33 0.33 0.33 0.01 0.99 0.00 0.00 1.00 0.00
Region2 0.33 0.33 0.33 0.89 0.11 0.00 0.97 0.03 0.00
Region3 0.33 0.33 0.33 0.08 0.92 0.00 0.01 0.99 0.00
Region4 0.33 0.33 0.33 0.67 0.33 0.00 0.98 0.02 0.00
Region5 0.33 0.33 0.33 0.75 0.25 0.00 0.95 0.05 0.00

Note: For simplicity and compactness of the notation, Mat.1, Mat.2, and Mat.3 were used to designate
Material1, Material2, and Material3, respectively.

Table 6.10: Evolution of the probability distribution function P (M(v,k)|n(v,k), a(v,k), πhaptic)
during the exploration of Object2

Initial condition
(k = 0)

1st exploration cycle
(k = 1, . . . , 5)

2nd exploration cycle
(k = 6, . . . , 10)

Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3
Region1 0.33 0.33 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Region2 0.33 0.33 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Region3 0.33 0.33 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Region4 0.33 0.33 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Region5 0.33 0.33 0.33 0.01 0.99 0.00 0.00 1.00 0.00

Note: For simplicity and compactness of the notation, Mat.1, Mat.2, and Mat.3 were used to designate
Material1, Material2, and Material3, respectively.

Table 6.11: Evolution of the probability distribution function P (M(v,k)|n(v,k), a(v,k), πhaptic)
during the exploration of Object3

Initial condition
(k = 0)

1st exploration cycle
(k = 1, . . . , 5)

2nd exploration cycle
(k = 6, . . . , 10)

Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3 Mat.1 Mat.2 Mat.3
Region1 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00
Region2 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00
Region3 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00
Region4 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00
Region5 0.33 0.33 0.33 0.00 0.00 1.00 0.00 0.00 1.00

Note: For simplicity and compactness of the notation, Mat.1, Mat.2, and Mat.3 were used to designate
Material1, Material2, and Material3, respectively.
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(a) (b) (c)

Figure 6.26: Probabilist representation of the result of the haptic exploration and post-
processing of a) Object1. b) Object2. c) Object3. Colormap described in Figure 6.22.

Material2, or Material3 increases. This methodology can be used, not only to improve

the representation of the workspace, but also to speed up the exploration of the workspace

toward an optimal representation.

6.9 Conclusions

The work presented in this chapter contributed to the development of autonomous dex-

terous robotic hand platforms by proposing a probabilistic inference grid to represent

and discriminate the perceived hardness-softness characteristics extracted during the ex-

ploration of soft objects. The proposed approach follows some principles inspired by

human strategies to perceive and estimate the haptic characteristics of objects in uncer-

tain environments. The perceived hardness-softness characteristics of unknown objects

are described by a probabilistic combination of previously known characteristics of a set

of reference materials (haptic memory of the system).

This approach is designed to progressively receive haptic inputs (cutaneous and kines-

thetic data). As long as the object exploration progresses, the total entropy of the rep-

resentation is reduced, showing that the representation becomes less uncertain. The pro-

cessing stages related to the integration of local context information have also contributed

to the improvement of the representation.
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