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Textural properties of microglial activation in

Alzheimer’s disease as measured by (R)-[I 'C]
PKII1195 PET

Marta Lapo Pais,I Lilia jor'ge,I Ricardo Martins,I Nadia Canério,"2 Ana Carolina Xavier',I
Rui Bernardes,'”? Antero Abrunhosa,' Isabel Santana?? and ®Miguel Castelo-Branco'*?

Alzheimer’s disease is the most common form of dementia worldwide, accounting for 60-70% of diagnosed cases. According to the
current understanding of molecular pathogenesis, the main hallmarks of this disease are the abnormal accumulation of amyloid pla-
ques and neurofibrillary tangles. Therefore, biomarkers reflecting these underlying biological mechanisms are recognized as valid tools
for an early diagnosis of Alzheimer’s disease. Inflammatory mechanisms, such as microglial activation, are known to be involved in
Alzheimer’s disease onset and progression. This activated state of the microglia is associated with increased expression of the trans-
locator protein 18 kDa. On that account, PET tracers capable of measuring this signature, such as (R)-[''C]PK11195, might be in-
strumental in assessing the state and evolution of Alzheimer’s disease. This study aims to investigate the potential of Gray Level
Co-occurrence Matrix-based textural parameters as an alternative to conventional quantification using kinetic models in (R)-[''C]
PK11195 PET images. To achieve this goal, kinetic and textural parameters were computed on (R)-[''C]PK11195 PET images of
19 patients with an early diagnosis of Alzheimer’s disease and 21 healthy controls and submitted separately to classification using
a linear support vector machine. The classifier built using the textural parameters showed no inferior performance compared to
the classical kinetic approach, yielding a slightly larger classification accuracy (accuracy of 0.7000, sensitivity of 0.6957, specificity
of 0.7059 and balanced accuracy of 0.6967). In conclusion, our results support the notion that textural parameters may be an alter-
native to conventional quantification using kinetic models in (R)-[''C]PK11195 PET images. The proposed quantification method
makes it possible to use simpler scanning procedures, which increase patient comfort and convenience. We further speculate that tex-
tural parameters may also provide an alternative to kinetic analysis in (R)-["'C]PK11195 PET neuroimaging studies involving other
neurodegenerative disorders. Finally, we recognize that the potential role of this tracer is not in diagnosis but rather in the assessment
and progression of the diffuse and dynamic distribution of inflammatory cell density in this disorder as a promising therapeutic target.
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Alzheimer’s disease represents the most common form of de-
mentia worldwide,'™ accounting for an estimated 60-70% of
diagnosed cases.” A sizable proportion of the risk of develop-
ing Alzheimer’s disease can be attributed to genetic factors.’
Increasing age, cerebrovascular diseases, female sex, diabetes,
hypertension, obesity and dyslipidemia are other known risk
factors for Alzheimer’s disease.'*® This condition is consid-
ered a slowly progressive disorder’” as it presents a long
asymptomatic phase before the first symptoms appear.”®
The early and most prominent symptoms include progressive
memory loss, difficulty with communication, perceptual
changes, impaired daily life activities and changes in personal-
ity such as increased irritability and anxiety."’

According to the current understanding of molecular
pathogenesis, the main hallmarks of Alzheimer’s disease
are the abnormal deposition of amyloid plaques in the brain,
composed of B-amyloid peptide (AB), and neurofibrillary
tangles, containing hyperphosphorylated tau proteins.'%!!
The amyloid cascade theory proposes that AB formation is
directly responsible for triggering tau phosphorylation and
formation of neurofibrillary tangles, leading to neuronal
loss and cognitive deficits.'*'*

For decades, clinical, neurological and neuropsychologic-
al examinations were used as the main criteria for diagnosing
Alzheimer’s disease.>® This diagnostic approach changed
when technological advances in neuroimaging (MRI and
PET) and CSF analysis allowed the development of biomar-
kers for Alzheimer’s disease.'® Because increased amyloid
plaque deposition and neurofibrillary tangles can be detected
decades before the onset of symptoms, biomarkers reflecting
these underlying biological mechanisms are recognized as va-
lid tools for an early diagnosis.'® The most relevant ones are

aggregated tau, MRI for visualizing brain atrophy, ['*FIFDG
PET for measurement of brain metabolism and amyloid and
tau PET for evaluating the accumulation of amyloid plaque
and pathogenic tau, respectively.”'®!'” However, imaging
biomarkers are limited due to the high cost and access con-
straints.’” For these reasons, neurological exams, cognitive
assessments and CSF biomarkers are still the most widely
used diagnostic tools for diagnosing Alzheimer’s disease.
Recently, a blood test was developed to detect AB protein ac-
cumulation in the brain.'® It promises to predict Ap levels with
>90% sensitivity and specificity compared to PET scanning.'®
Due to the cost and scalability advantages over current techni-
ques, in the future, these plasma biomarkers may enable
broader clinical access and efficient population screening.”'®

Inflammatory mechanisms, like microglial activation, are
known to be involved in Alzheimer’s disease onset and progres-
sion.>*! Actually, an amyloid cascade/neuroinflammation
theory suggests that Ap formation activates microglial cells,
which release potentially neurotoxic substances, resulting in
tau phosphorylation and neurodegenerative changes.'> The
microglial activated state is associated with increased expres-
sion of peripheral benzodiazepine receptors,”®*! also known
as the translocator protein 18 kDa (TSPO).>* On that account,
tracers capable of measuring this signature might be instrumen-
tal in assessing the state and evolution of Alzheimer’s disease.

Here, we used (R)-[''C]PK11195, a radiolabelled specific
antagonist of the TSPO that has been established for >30 years
in the clinical context of several pathologies.”> These include
Alzheimer’s disease,'%!319-21:23-32 parkinson’s disease,*3337
Lewy body dementia,*® Huntington’s disease’”** and amyo-
trophic lateral sclerosis.* In Alzheimer’s disease, various stud-
ies found increased (R)-[''C]PK11195 binding in several
cortical regions.'*?%?12432 Tywo studies found an increased
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binding in brain regions, such as the parahippocampal, cingu-
late, middle temporal, superior parietal and superior frontal
cortex,'® and small clusters in the occipital lobe.'” Others
were not able to replicate differences in regional (R)-[''C]
PK11195 binding between controls and Alzheimer’s dis-
ease.’"** A longitudinal study found dynamic changes in acti-
vated microglial hotspots in six of eight Alzheimer’s patients
over 16 months.”” Another longitudinal study of the same
group supported a similar type of evidence by reporting dis-
tinct microglial patterns in different stages of Alzheimer’s dis-
ease.’ In the mild cognitive impairment group, Fan et al.*°
found decreased levels of (R)-[''C]PK11195 uptake over
time, whereas in Alzheimer’s disease, a longitudinal increase
was observed over 10-18 months. In contrast, Ismail et al.'?
reported that overall levels of inflammation declined over 2
years. These longitudinal results suggested that activated
microglia might present distinct dynamic patterns in the evolu-
tion of Alzheimer’s disease. A protective anti-inflammatory
role may dominate during the acute early phase response fol-
lowed by a chronic pro-inflammatory response that becomes
detrimental,*>** leading to the failure in clearing Ap plaques.'?
The methods used to quantify PET neuroimaging data are
often based on kinetic modelling of tracers using regions of
interest (ROIs).**** Besides the need for dynamic scanning,
since no brain region is devoid of TSPO, an arterial input
function is also ideally required to quantify TSPO PET
images using kinetic models.***” Because it involves blood
sampling from an arterial catheter, this approach is more in-
vasive and experimentally demanding, especially in frail pa-
tients.*”>*® Therefore, there is a need to have PET
quantification methods and metrics based on simpler scan-
ning procedures that provide additional information rele-
vant to the disease and increase patient comfort and
convenience.*® Apart from these benefits, the diffuse distri-
bution of (R)-["'"C]PK11195 raises the question of whether
alternatives to the traditional ROI-based kinetic approaches
should be attempted, which concerns (R)-[''C]PK11195.
Gray Level Co-occurrence Matrix (GLCM) textural para-
meters applied to (R)-[''C]PK11195 PET images can provide
a statistical description of the spatial characteristics of
TSPO.*’ Accordingly, the present study hypothesizes that
whole-brain (grey and white matter) GLCM-based textural
parameters may be an alternative to ROI-based kinetic mod-
elling in (R)-[""C]PK11195 PET images in Alzheimer’s dis-
ease. To achieve this goal, kinetic and GLCM-based textural
parameters were computed from (R)-[''C]JPK11195 PET
images of 19 patients with an early diagnosis of Alzheimer’s
disease and 21 healthy controls and submitted separately to
classification using a linear support vector machine.

Materials and methods

The dataset used in this cross-sectional study consists of 40
subjects, 19 Alzheimer’s patients and 21 healthy controls
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Table | Demographic and clinical characteristics of the
study population

Alzheimer’s disease
(n=19) (mean + SD)

Healthy controls
(n=21) (mean + SD)

Age, years 66.316 +7.048 65.857 + 6.836
Sex, M/F 9/10 (0.900) 10/11 (0.909)
Education 8.895 +5.801 11.095+£5513
MMSE 14611 +4313 —
MoCA 14.368 + 4.323 24.158 +4.413
CDR | —

CDR, Clinical Dementia Rating; F, female; M, male; MMSE, Mini-Mental State
Examination; MoCA, Montreal Cognitive Assessment; SD, standard deviation. Data are
expressed as mean + SD, except for the M/F ratio (sex).

matched for age, sex and education. Using the Clinical
Dementia Rating (CDR) instrument, we included patients
in the same disease stage, with an early diagnosis (<2 years)
of probable Alzheimer’s disease at a mild stage of dementia
(CDR =1). All participants performed the acquisitions of
the structural MRI and functional (R)-[''C]PK11195 PET
at the Institute of Nuclear Sciences Applied to Health. The
demographic characteristics of the dataset are summarized
in Table 1. Alzheimer’s disease participants were assessed ac-
cording to standard clinical examination procedures from
the Memory Clinic of the Centro Hospitalar e
Universitdrio de Coimbra. A multidisciplinary team per-
formed all the evaluations and the diagnosis using a consen-
sus approach based on the Diagnostic and Statistical Manual
of Mental Disorders fourth edition’® and the criteria for
probable Alzheimer’s disease dementia of the National
Institute of Neurological and Communicative Disorders
and Stroke and the Alzheimer’s Disease and Related
Disorders Association.® The control group was composed
of 21 healthy volunteers from the community without neuro-
logic or psychiatric disorders, with no severe visual or audi-
tory impairment, and eligible for an MRI and PET exam. The
inclusion criteria were general cognition within normal
ranges and independence in basic and instrumental daily
life activities. When required, all participants and their care-
givers gave written informed consent for the study conducted
according to the Declaration of Helsinki and subsequent re-
visions. Further, ethical approval was obtained from the eth-
ics committee of the Faculty of Medicine of the University of
Coimbra.

(R)-[*'C]PK11195 PET was produced in-house according to
published methods.’! A Philips Gemini GXL PET/CT scan-
ner (Philips Medical Systems, Best, the Netherlands) was
used to perform dynamic 3D PET scans of the entire brain
(90 slices, 2 mm slice sampling) and a low-dose brain CT
scan for attenuation correction. PET acquisition started im-
mediately after the intravenous bolus injection of a max-
imum of 370 MBq of (R)-[''C]JPK11195. Scans were
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Figure | DVR (R)-[''C]PKI1195 PET images. Representative example of a quantitative DVR (R)-[''C]PK 11195 PET images of an
Alzheimer’s disease patient (A) and a healthy control (B), showing the density of inflammatory cells. This figure was constructed using PMOD
software (PMOD, version 4.105; PMOD Technologies, Zurich, Switzerland).

acquired over 60 min (22 frames: 4 x30s+4 X 60s+4Xx
120 s+4x240s+6x300s). PET data were reconstructed
using a LOR-RAMLA algorithm, with attenuation and scat-
ter corrections.

Structural MRI data were collected using a Siemens
Magnetom TIM Trio 3 Tesla scanner (Siemens, Munich,
Germany) with a phased array 12-channel birdcage head
coil. We acquired T;-weighted structural MRI data at 1 x
1 x 1 mm? spatial resolution, repetition time 2530 ms, echo
time 3.42 ms and flip angle 7°.

After image acquisition, 3D Slicer, an open-source software
program (https:/www.slicer.org/), was used to perform the
co-registration between PET and structural MRI images.
These images were then transformed into the Montreal
Neurological Institute space using SPM12, another open-
source software program (https:/www.fil.ion.ucl.ac.uk/
spm/). At last, all images were visually assessed to fine-tune
registration when necessary.

The distribution volume ratio (DVR) was computed at the
voxel level for all (R)-[''C]PK11195 PET images by applying
the Logan’? plot method using an in-house made software
program implemented in previous works of our insti-
tute.' %3 The reference region was determined by the super-
vised cluster analysis algorithm based on four kinetic classes:

grey matter without specific binding, white matter, blood
and grey matter with specific binding.** A representative ex-
ample of a quantitative DVR (R)-["'C]PK11195 PET image
of an Alzheimer’s patient compared to a healthy control is
displayed in Fig. 1.

Kinetic parameters were then computed from DVR
(R)-["'"C]PK11195 PET images in Mango free and open-
source software (https:/ric.uthscsa.edu/mango/) using an
ROI-based approach. For each ROI, the mean values were
calculated from DVR (R)-[''C]PK11195 PET images in the
Montreal Neurological Institute space using masks of the
anatomical brain region atlas.

Firstly, (R)-[''C]PK11195 PET images were summed at the
voxel level from 40 to 60 min post-injection. After this
step, the whole brain (grey and white matter) was segmented
from all structural MRI images in the Montreal Neurological
Institute space using the Extract Brain (BET) Plugin of the
Mango free and open-source software (https:/ric.uthscsa.
edu/mango/). GLCM-based textural parameters were then
calculated in MATLAB (MATLAB and Statistics Toolbox
Release 2019b, The MathWorks, Inc., Natick, MA, USA)
from the summed (R)-[*'C]PK11195 PET images using these
whole-brain masks.

To minimize overfitting and due to the relatively small
sample size (n=40) of the dataset, a 10:1 per-class
sample-to-feature ratio was used as a criterion to create
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Table 2 Mean + SD regional values of DVR (R)-[''C]PKI1195 PET images

ROI Healthy controls (mean + SD)
Frontal lobe 0.895 +0.038
Temporal lobe 0.938 + 0.045
Frontal-temporal space 0.930 +0.075
Superior frontal gyrus 0.904 + 0.038
Middle frontal gyrus 0.915+0.048
Precentral gyrus 0.910+0.038
Inferior frontal gyrus 0.938 +0.050
Superior temporal gyrus 0.935 +0.047
Middle temporal gyrus 0.977 + 0.046
Inferior temporal gyrus 0.981 + 0.056
Amygdala 1.087 +0.078
Hippocampus 0.995 +0.071
Inferior parietal lobule 0.912 + 0.044
Superior parietal lobule 0.920 + 0.055
Precuneus 0.948 + 0.048

Alzheimer’s disease (mean + SD)

Sig. (two-tailed) (P-value®)

0.914 +0.041 0.127
0.933 +0.042 0.765
0.924 + 0.060 0.762
0.935 +0.046 0.027¢
0.932 +0.047 0.251

0.932 + 0.047 0.251

0.944 +0.039 0.720
0.914 +0.046 0.149
0.977 + 0.045 0.994
1.005 + 0.048 0.155
1.084 + 0.072 0.899
1.017 +£0.070 0.326
0.924 + 0.040 0.360
0.942 + 0.064 0.249
0.969 + 0.049 0.172

RO, region of interest; SD, standard deviation. *Significant parametric statistical tests performed between Alzheimer’s and healthy control groups.

robust classifiers.>>°® Thus, a subset of four features was
selected using the R free software environment (https:/
www.r-project.org/) from kinetic and GLCM-based textural
parameter datasets. Firstly, we computed the correlation
between features to avoid cases where correlation between
two features was >0.9. After that, we rank the resulting
features according to their importance based on a logistic
regression model. The four features of major importance
for the logistic regression model were selected.

The four features selected from kinetic and GLCM-based
textural parameter datasets were used separately to build
the individual classifiers. These individual classifiers were
computed using a linear support vector machine in
MATLAB (MATLAB and Statistics Toolbox Release
2019b, The MathWorks, Inc., Natick, MA, USA). We choose
to use a linear support vector machine due to its simplicity,
wide acceptance and proven good ability for many common
classification problems using multivariate medical data.’?
The label was defined by the clinical Alzheimer’s diagnosis
described in the Materials and Methods section, Dataset
section. Finally, we use the leave-one-out cross-validation
technique to estimate the performance of the individual clas-
sifiers. Leave-one-out cross-validation is a particular case of
cross-validation that uses the data of a subject to be classified
as a single-item test set while the remaining subjects’ data
are used to train the classifier.’**” This procedure is repeated
until all subjects’ data have been classified once. Then, based
on the results of the successive classification tests, the object-
ive measures of test performance and balanced accuracy are
calculated.

After assessing for data normality using the Shapiro-Wilk
test, the #-test or its non-parametric version, the Mann—
Whitney test, were used for between-group comparisons of

kinetic and textural parameters. These tests were performed
using IBM SPSS Statistics for Windows, version 25 (IBM
Corp., Armonk, NY, USA).

To assess whether the proportion of Alzheimer’s disease
classification is the same between classifiers, the non-
parametric Cochran Q test was computed in MATLAB
(MATLAB and Statistics Toolbox Release 2019b, The
MathWorks, Inc., Natick, MA, USA). This test is considered
a particular case of the non-parametric Friedman test, used
to detect differences in two or more matched sets where
the response is binary.’®

Results

Tables 2 and 3 show mean + SD regional and whole-brain
values of DVR (R)-[''C]PK11195 PET images and
GLCM-based summed (R)-[''C]PK11195 PET images, re-
spectively. These tables also detail the between-group com-
parison results of kinetic and textural parameters.

t-tests identified significant between-group differences only
regarding the superior frontal gyrus [t-value (degrees of
freedom = 38) =2294, P-value = 0.027]. Overall regional
differences of DVR (R)-[''C]JPK11195 PET images were
similar across groups. See Table 2 for details. This result is
also illustrated in the scatter plot presented in Fig. 2, showing
the variance in the binding signal of DVR (R)-[''C]PK11195
PET images in the different subject groups.

Significant differences were found between groups regarding
the energy, correlation, sum entropy, entropy, information
measure of Correlations I and Il and maximal correlation co-
efficient. See Table 3 for details.
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Table 3 Mean + SD whole-brain GLCM-based textural parameters of summed (R)-[''C]PK 11195 PET images

GLCM-based textural parameters

Healthy controls (mean + SD)

Alzheimer’s disease (mean + SD)

Sig. (two-tailed) (P-value®)

Energy 0.621 +0.007 0.615+0.007 0.006*
Contrast 0.451 +0.008 0.459+0.014 0.101

Correlation 0.923 +0.024 0.940 +0.016 0.021*
Variance 24.478 +0.933 24.732 + 1.004 0.208
Homogeneity 0.991 +0.002 0.991 +2.79E-04 0.180
Sum average 7.243 +0.207 7.299 +0.224 0.208
Sum variance 88.655 +3.507 89.575 + 3.694 0.239
Sum entropy 0.582 +0.009 0.590 +0.011 0.025°
Entropy 0.850+0.016 0.860 +0.017 0.044*
Difference variance 0.450 + 0.008 0.458 +0.013 0.081

Difference entropy 0.054+0.012 0.052 +0.001 0.133
Information measure of Correlation | —0.853 +0.030 —0.870+0.015 0.0212
Information measure of Correlation I 0.803 +0.019 0.818+0.016 0.013°
Maximal correlation coefficient 0.923 + 0.024 0.940 +0.016 0.021*

GLCM, Gray Level Co-occurrence Matrix; SD, standard deviation. Significant *non-parametric and bpar'ametric statistical tests performed between Alzheimer’s and healthy controls

groups.
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Figure 2 Scatter plot showing the variance in the binding signal of DVR (R)-[''CIPKI1195 PET images in the different subject
groups. DVR (R)-[''C]PK 11195 PET images in healthy control subjects (blue dots) and Alzheimer’s disease (red dots). AD, Alzheimer’s disease;
DVR, distribution volume ratio; HC, healthy controls; ROI, region of interest. This figure was constructed using Prism 8 (GraphPad Software, San

Diego, CA, USA).

The results of the objective measures of test performance and
balanced accuracy for the kinetic and textural-based classi-
fiers and of Cochran’s Q test are presented in Table 4. The
textural-based classifier showed no inferior performance
compared to the classical kinetic approach, yielding a slight-
ly larger classification accuracy (accuracy of 0.7000, sensitiv-
ity of 0.6957, specificity of 0.7059 and balanced accuracy of
0.6967) (bold values of Table 4). Using Cochran’s Q test, we

found no difference between kinetic and textural-based clas-
sifiers in Alzheimer’s disease classification [* statistic O (de-
grees of freedom =1) =0.6923, P-value = 0.4054].

Discussion

This study aimed to investigate the potential of
GLCM-based textural parameters as an alternative to kinetic
modelling in quantifying (R)-[''C]PK11195 PET images of
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Table 4 Measures of test performance (accuracy, sensitivity and specificity) and balanced accuracy for the kinetic and

textural-based classifiers and Cochran’s Q test results

Kinetic GLCM-based textural
Accuracy 0.6750 0.7000
Sensitivity 0.7000 0.6957
Specificity 0.6500 0.7059
Balanced accuracy 0.6754 0.6967

Cochran’s Q test

HO: The proportions of (response = ‘AD’) in all groups are equal.

HI: The proportion of (response = ‘AD’) in at least one group is
different.

2 statistic Q P-value DF Reject HO at o = 0.05?

0.6923 0.4054 | No

AD, Alzheimer’s disease; DF, degrees of freedom; HO, null hypothesis; H1, alternative hypothesis; Q, the test statistic value. Cochran’s Q test was performed on the hypothesis that the

number of classifiers has the same number of successes and failures.

individuals with Alzheimer’s disease. The focus was to study
the role of (R)-[''C]PK 11195 PET textural parameters as indir-
ect measures of neuroinflammation and disease burden in
Alzheimer’s disease. Regarding (R)-[''C]PK11195 PET quanti-
fication, previous studies have focused on comparing different
kinetic modelling techniques using arterial plasma and refer-
ence tissue as input functions.”**-*>? Although the arterial
input function is the gold standard methodology, it involves
blood sampling from an arterial catheter, which makes this
quantification challenging, invasive and an obstacle to a wide
application.*”*3% Because no brain region is devoid of
TSPO,*”*® there is no true reference region for (R)-[''C]
PK11195,*” which also makes the quantification using refer-
ence tissue as input function challenging in PET neuroimaging
studies using this tracer. Studies have used cluster analysis to
extract a reference tissue devoid of TSPO.!”#7:#8:5%3%:61 The
cluster analysis segments reference tissue voxels based on dif-
ferences in time—activity curves that are assumed to be without
specific binding.*®** Nevertheless, no voxel is actually entirely
devoid of TSPO, as this protein is heterogeneously distributed
in the brain.*® As such, we decided to investigate a different
(R)-["'C]PK11195 quantification approach that does not re-
quire the use of blood sampling or a reference region.

Textural parameters have scarcely been investigated in
neurological PET.*”** Mahler ez al.®* found that the shape
and texture of the TSPO signal differentiated >96% of mul-
tiple sclerosis lesions. Regarding Alzheimer’s disease, texture
analysis applied to amyloid PET imaging found that texture
or shape features classify Alzheimer’s patients with at least
as good accuracy as the classical kinetic modelling ap-
proach.*”®? These promising sparse findings leave a window
of opportunity to implement textural parameters in this field,
particularly in TSPO PET.

Using the conventional kinetic ROI-based analysis, we
found significant between-group differences just in the super-
ior frontal gyrus (see Table 2 for details), which supports the
reported restricted (R)-[''C]PK11195 differential binding in
fewer anatomical brain regions in Alzheimer’s disease.'®'’
On the other hand, when using textural whole-brain-based
analysis, significant differences were found between groups
regarding the energy, correlation, sum entropy, entropy, in-
formation measure of Correlations I and Il and maximal cor-
relation coefficient (see Table 3 for details). Corroborating
these results, the classifier built using the GLCM-based
textural parameters yields a slightly larger classification

accuracy than the classical kinetic approach (see Table 4
for details). The overall identical performance of both classi-
fiers and Cochran’s Q test result (see Table 4 for details) sup-
port the stated hypothesis that GLCM-based textural
parameters may be an alternative to kinetic modelling in
the quantification of (R)-[''CJPK11195 PET images of
Alzheimer’s disease patients. From these results, we can con-
clude that (R)-["'C]PK11195 PET textural analysis yields
similar quantitative markers of inflammatory cell density
to kinetic analysis. This textural approach eliminates the
need for dynamic acquisition and blood sampling, which in-
creases patient comfort and convenience.

Regarding other neurodegenerative disorders, (R)-[''C]
PK11195 binding was found elevated in cortical regions of
Huntington’s disease patients,’”** in Lewy body participants
with mild disease when compared to those with moderate/se-
vere impairment,®® in cortical and subcortical structures of
amyotrophic lateral sclerosis participants, with variable pat-
terns at the individual level,*' and in Parkinson’s disease in cor-
tical regions,”***>” in the pons and basal ganglia®* and in the
midbrain at early stages of this disease.>* Interestingly, one
study found that Parkinson’s disease individuals had compar-
able or lower regional (R)-['"'C]PK11195 binding relative to
controls.*® These results suggest that in other neurodegenerative
disorders, inflammatory cell density measured by (R)-[''C]
PK11195 PET presents a diffuse and dynamic distribution pat-
tern as it seems to happen in Alzheimer’s disease. Thus, we
speculate that GLCM-based textural parameters may also be
an alternative or complement to kinetic analysis in (R)-[''C]
PK11195 PET images of other neurodegenerative disorders.

Our study presents a few limitations such as the lack of lon-
gitudinal assessment. To overcome this caveat, we used the
CDR instrument to ensure a dataset of patients in the same
disease stage. CDR can discern very mild impairments, but
its weaknesses include the amount of time it takes to imple-
ment, subjectivity and relative inability to capture changes
over time. Therefore, this work only addresses a relatively
early diagnosis (<2 years) of probable Alzheimer’s disease.
Due to the progression of chronic inflammation, if we had in-
cluded patients in advanced stages of Alzheimer’s disease,
we would expect to obtain even more detectable changes
based on textural analysis. Another limitation of our study
is the use of a first-generation TSPO PET tracer, (R)-[''C]
PK11195, which has been reported to suffer from high non-
specific binding and a low signal-to-noise ratio.>”*¢*¢
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Firstly, recent results indicate that TSPO PET more directly re-
flects the density of inflammatory cells.°® Therefore, we re-
ported our results according to (R)-["'C]PK11195 as being a
measure of microglial activation via the density of its inflamma-
tory cells. Secondly, although the goal of this study was not to
find an alternative to other imaging biomarkers in distinguish-
ing Alzheimer’s disease from healthy controls or the relation-
ship between (R)-[''C]PK11195 and amyloid deposition, it is
still relevant to consider some aspects in this regard.

In a previous work of our group, Oliveira et al.*> reported
that kinetic modelling of [''C]Pittsburgh Compound B PET
images yielded an accuracy of 96% in Alzheimer’s disease
discrimination (accuracy 96 %, sensitivity 96% and specifi-
city 95%). Our classifier built using (R)-[''C]PK11195
PET images and a similar approach—linear support vector
machine and leave-one-out cross-validation technique—
shows a lower ability to discriminate Alzheimer’s disease.
We recognize that kinetic modelling approaches applied to
["1C]Pittsburgh Compound B, a PET ligand for i vivo evalu-
ation of one of the main hallmarks of Alzheimer’s disease—
abnormal deposition of amyloid plaques—are better for
discriminating Alzheimer’s disease. Nonetheless, microglial
activation is known to be involved in Alzheimer’s disease
onset and progression”*!? and may reflect a dynamic patho-
logical process in this disorder with distinct phases of anti-
and pro-inflammatory immune activation.’>**  Since
(R)-["'C]PK11195 represents an indirect measure of this in-
flammatory mechanism, the main potential of this tracer may
be in the assessment and progression of the diffuse and
dynamic distribution of inflammatory cell density in this
disorder as a promising therapeutic target. Understanding
the chronic inflammation pattern mediated by microglia®”-®%
requires the use of other approaches to assess its spatial char-
acteristics. That further justifies our proposed alternative to
quantify (R)-[''C]PK11195 PET images.

Regarding the correlation between (R)-[''C]PK11195 and
amyloid deposition, Jorge et al.'% in a previous work of our
group found no significant correlation between (R)-[''C]
PK11195 and amyloid retention in Alzheimer’s disease, cor-
roborating the results of other studies.'***** Conversely,
Parbo et al.®' found clusters with a positive correlation.
Others reported positive correlations at both baseline and
follow-up.'*3° Interestingly, one study showed a significant
negative correlation in the posterior cingulate cortex.”®
These results may indicate that AB accumulation is not the pri-
mary cause of inflammatory cell density and that these physio-
logical phenomena should be investigated independently.

Conclusion

In conclusion, our results have shown that GLCM-based tex-
tural parameters may be an alternative to conventional
ROI-based kinetic modelling in quantifying (R)-[*!C]
PK11195 PET images. The proposed quantification method

M. Lapo Pais et al.

makes it possible to use simpler scanning procedures, which
increase patient comfort and convenience. We further specu-
late that GLCM-based textural parameters may also be an
alternative or complement to kinetic analysis in PET neuroi-
maging studies involving other neurodegenerative disorders.
Finally, we recognize that the role of this tracer is not in diag-
nosis but may be in the assessment and progression of the dif-
fuse and dynamic distribution of inflammatory cell density in
this disorder as a promising therapeutic target.
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